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Extract Similarities from Syntactic Contexts: a
Distributional Semantic Model Based on
Syntactic Distance

Alessandro Maisto⇤

Università degli Studi di Salerno

Distributional Semantics (DS) models are based on the idea that two words which appear in
similar contexts, i.e. similar neighborhoods, have similar meanings. This concept was originally
presented by Harris in his Distributional Hypothesis (DH) (Harris 1954). Even though DH
forms the basis of the majority of DS models, Harris states in later works that only syntactic
analysis can allow for a more precise formulation of the neighborhoods involved: the arguments
and the operators.

In this work, we present a DS model based on the concept of Syntactic Distance inspired by a
study of Harris’s theories concerning the syntactic-semantic interface. In our model, the context
of each word is derived from its dependency network generated by a parser. With this strategy,
the co-occurring terms of a target word are calculated on the basis of their syntactic relations,
which are also preserved in the event of syntactical transformations. The model, named Syntactic
Distance as Word Window (SD-W2), has been tested on three state-of-the-art tasks: Semantic
Distance, Synonymy and Single Word Priming, and compared with other classical DS models.
In addition, the model has been subjected to a new test based on Operator-Argument selection.
Although the results obtained by SD-W2 do not always reach those of modern contextualized
models, they are often above average and, in many cases, they are comparable with the result of
GLOVE or BERT.

1. Introduction

Distributional Semantics (DS) is a model of meaning whose theoretical foundation is
the Distributional Hypothesis (DH). DH relies on the work of Harris (Harris 1954),
which sets out the basis for a linguistic distributional methodology. The Distributional
Hypothesis states that the statistical distribution of linguistic elements in context deter-
mines their semantic behavior (Lenci 2018).

In Distributional Semantics, the similarity between two words is calculated in terms
of similarity between vectors. Word vectors describe the terms as a numerical represen-
tation of the various contexts in which they appear. Lenci (2018) reported two kinds of
classification for DS models: the first regards the type of context, the latter the method of
learning distributional vectors. Regarding the first classification, we can identify region
models, in which the context of a word is the entire region the word appears in, and word
models, which calculate context as a set of terms that appear at a certain distance from
a target word. With reference to the first family of models, Ruge (1992) claims that the

⇤ Università degli Studi di Salerno, Via Giovanni Paolo II, 139, Fisciano (SA) Italia. E-mail:
amaisto@unisa.it.
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larger the context, the larger the number of not semantically compatible terms included
in the analysis. Moreover, Sahlgren (2008) considered the document as a context for a
legacy of information retrieval. Since information retrieval is an artificial problem, “a
document in the sense of a topical unit–unity is an artificial notion that hardly exists
elsewhere” (Sahlgren 2008).

Word models, on the other hand, can be further divided into window-based models
and syntactic models: the former consider a variable number of neighbor terms (the so-
called “window”) as the context of a given word. The latter seek to exploit syntactic
dependency in order to obtain a more precise simulation of human knowledge-learning
phenomena. However, considering the amount of pre-processing required, there is no
empirical evidence for the supremacy of this kind of model (Sahlgren 2008).

In this paper, we aim to investigate the benefits of using syntactic information in
Distributional Semantics, regardless of the amount of pre-processing required (this is
not really a problem because of advances in syntactic parsing and machine performance,
as well as the availability of ever-larger parsed corpora). We present a new syntactic
model that benefits from a deeper reading of Harris’s theories. We have based the
new model on the concept of syntactic distance (Liu, Xu, and Liang 2017), the distance
between a target word and other words syntactically connected to it, calculated by a
dependency parser (Definition 1).

Definition 1
The Syntactic Distance is equivalent to the number of arcs of the dependency graph

which separate two words.

All words at a certain syntactic distance from the target word may be included
in the context of the target word. We have named our model the Syntactic Distance as
Word-window (SD-W2) to highlight its use of the syntactic distance as a context-window
selection metric.

The Distributional Hypothesis stated by Harris includes a level of syntactic analysis,
which our model incorporates by taking a parsed corpus as input. The preliminary
results show that our dependency-based system achieves results that are comparable
to many other models and very close to the results of the BERT-based models.

The paper is structured as follows: in section 2, we analyze Harris’s studies on
the concept of “distribution”, exploring the reasons why a syntactic model must be
implemented. In section 3 we present a brief state of the art and point the focus on
the most related works. In section 4, we present our methodology. In section 5 we
present the experimental step. Finally, in section 6 we present the experiment outline
and results.

2. The Distributional Hypothesis

Harris (1954) claimed that when someone speaks, they choose the next word from the
members of those classes of words that usually occur in this position. Each language
element can be grouped into classes, and while the relative occurrence of a class
can be stated exactly, the occurrence of a particular member of one class relative to
a particular member of another class must be calculated in terms of probability. In
other words, given two linguistic elements A and B, if they “have almost identical
environments”, they can be considered synonyms (e.g., oculist and eye-doctor); if they
have “some environments in common and some not” (e.g., oculist and lawyer), they
have different meanings and this difference corresponds to the “amount of difference
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of their environment” (Harris 1954, p. 157). The distributional structure reflects a sort of
meaning structure in the way that “difference of meaning correlates with the difference
of distribution” (Harris 1954, p. 156). The operation that studies the distributional
structure is distributional analysis.

Distributional analysis is a basic process that Harris describes as being related to
five distributional facts: a) possibility of segmenting flows of speech into parts (elements)
to find regularities in the occurrence of one part relative to others; b) similarity, con-
sidered as the property of some elements to group with similar elements into sets; c)
dependence of the elements in a group of similar objects on elements in another group;
d) substitutability of elements that have the same environment; e) domain, such as the
word, the phrase, the clause, in which both dependence and substitutability work.
The distributional analysis output is a set of substitution classes or equivalence classes
(Harris 1946, 1952).

Many authors have adopted the distributional hypothesis and the correlation be-
tween distribution and meaning for practical tasks: the first authors to exploit dis-
tributional analysis in a computational task were Schutze and colleagues (Schutze
1992a; Schütze 1992b; Schutze and Pedersen 1995). He presented a paper on word
sense disambiguation based on a vector representation of word similarity derived from
lexical co-occurrence. Subsequently, Landauer and Dumais (1997) proposed a model
for the simulation of knowledge-learning phenomena based on local co-occurrence
data in a large representative corpus, called Latent Semantic Analysis (LSA). Lund and
Burgess (1996) introduced Hyperspace Analogue to Language (HAL), an algorithm that
calculates the semantic similarity between two words by comparing the co-occurrence
vectors of the two words with a Euclidean measure of distance. These approaches paved
the way for the success of Distributional Semantics (DS).

Although early Distributional Semantics models display evidence of the influence
of Harris’s hypothesis, the distributional hypothesis is not explicitly mentioned as their
theoretical foundation. Only later was the Distributional Hypothesis adopted by DS
authors as a type of a posteriori justification for their work. Indeed, the above studies
did not take into account some fundamental aspects of Harris’s theories, such as the
influence of syntax on the formulation of the neighborhoods of a word and the problem
of non-contiguous elements of syntactic structures.

2.1 Syntax and Semantics in Harris

In Harris (1968, p. 209) there is an essential specification on the Distributional Hypoth-
esis:

“...difference in meaning between words correlates with difference between them in respect to
their word neighborhoods. Transformational analysis permits a more precise formulation of the
neighborhoods involved: they are the arguments and the operators.”

The correlation between a word’s neighborhoods and its syntactic context appears
even more clearly in Harris’s later works. In Harris (1988, 1991), he described language
structure in terms of constraints. Each word combination is characterized by a set of
constraints, “each of which precludes particular classes of combination from occurring
in utterances of given language” (Harris 1991, p. 53). These constraints (partial order, like-
lihood, and reduction) act on the product of another constraint in a cascading mechanism.

The first constraint regards the partial ordering on words understood as “what gives
a word-sequence the capacity to express fixed semantic relations among its words”
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(Harris 1991, p. 5). It acts above the other constraints. It is the “essential one” (Harris
1991, p. 7) because it creates sentences.
In the partial order or Operator-Argument constraint, a word serves as the Operator
over the other words called Arguments. The words of a language obtain their ability to
co-occur in sentences thanks to the partial order: a word like eat is higher than sheep or
grass because it can operate on nouns as in “sheep eat grass”. Other operators such as know
or probable are higher than eat because they can operate over it as in “I know that sheep eat
grass”. Sentences can be defined as word-sequences that satisfy this partial order. The
operator-argument relations yield the meaning of the entire sentence by applying partial
order relations to the meaning of the words. The sentence meaning is “the hierarchy of
predicatings among the meanings of the words of the sentence” (Harris 1991, p. 8).

The likelihood constraint regards the meaning of words. For each argument word,
there are some words that “are more likely than others to appear as operator on it”
(Harris 1991, p. 5). In other words, the meaning of a word is determined by the selection
of words (word-choice) that are operators of arguments in a given sentence (Harris
1976a, p. 263).
This constraint is strongly related to distributional analysis and the concept of depen-
dence. Dependence is conceived as “a relation between a word and an ordered set of
word classes”. As exemplified by Harris (1991, p. 55), in “the child sleeps”, the verb
sleep depends on a word of a particular class of objects such as Mary, John, the child,
etc. Therefore, as an argument of sleep, we can find a particular set of elements that
corresponds to the set of Nouns. This dependency produces a similarity between the el-
ements in the group. The dependence is never complete, but there are “various degrees
and types of occurrence-dependence” (Harris 1954, p. 159). Among these nouns, we can
find John, the child, the dog, and, more rarely, the city (The city sleeps), the tree (Trees have to
sleep each winter). The likelihood-gradation between operators and arguments is a crucial
relationship in language structure, and these inequalities in likelihood are not modified
by transformations (Harris 1976b, p. 243).

The third constraint concerns the reduction of a word-sequence that helps produce
more compact sentences. Certain words with a high likelihood contribute to the mean-
ing of the sentence with a small amount of information (Harris 1991, p. 84). For example,
the sequence to come in sentences like “John expects Mary to come”, has a very high
likelihood for the operator expects, and its reduction produces an acceptable sentence
(John expects Mary). Harris identifies three kinds of widespread reductions. Reduction
to zero (zeroing), which is the case of the example above. Reduction to affixes, as in
the word childhood, in which the suffix -hood derives from the Old English had, “state,
condition”. Reduction to pronouns as in the sentence “I met John, who sends regards”,
which is a reduction from “I met John; John – the preceding word has the same referent as
the word before – sends regards”. “John – the preceding word has the same referent as the word
before” is reduced to who, and, in some cases, can be zeroed (“The money which is needed
is unavailable”, “The money needed is unavailable”) (Harris 1991, p. 81-82).
As indicated above, Harris states that each constraint acts on the product of another
constraint; thus, the third constraint, reduction, acts on the product of the Likelihood
constraint. The latter, in turn, acts on the product of the partial-order constraint. Hence,
as affirmed by Harris, “given the meanings of the words, finding the operator- argument
relations among the words of a sentence yields its meaning directly: that meaning is the
hierarchy of predicatings among the meanings of the words of the sentence”(Harris
1991, p. 8). In other words, “the syntax of a sentence indicates its semantics” (Harris
1991, p. 9).
Reduction is included in the set of basic transformations (Harris 1991, p. 210). Those
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basic transformations (zeroing or reduction, permutation of word-classes, single-word
adjuncts, sentence nominalization, and conjoined sentences) make it possible to derive
the base sentence (or kernel sentence) from two kinds of paraphrastic sentence: sentences
with additional words (e.g. the sheep eat grass; I know sheep eat grass) and sentences with
no addition but with a change (e.g. He reads all day; He reads things all day).
In all these transformations, the partial-order and the “major elements of meaning”
are preserved (Harris 1991, p. 290). The word-sequence (given by the partial order) of
unreduced sentences is not modified by reduction, and word-choice (resulting from
likelihood and partial order constraints) is preserved under transformations. "With the
preservation of word-choice comes meaning-preservation" (Harris 1991, p. 229).

These constraints suggest that, in Harris, the syntactic relation between operators
and arguments yields the semantics of the sentence. Besides, the meaning of a single
word depends on the likelihood that it will appear in its various operator-argument
statuses. Reductions and transformations alter neither the operator-argument relation
nor the likelihood inequalities.

Since a speech event is always developed in a single dimension of time, it needs
a linear order that differs from the partial order. In addition to the three constraints
illustrated above, Harris (1991, p. 6) hypothesizes that, after the partial order, the “words
are put in one or more linear forms”.

In another paper (Harris 1968), the author affirmed that one of the relevant proper-
ties of language is the linear order of entities. Though operators and their operand (argu-
ment)1 must be contiguous, Harris contemplates that “later operators on the resultant
may intervene between the earlier operator and its operand, separating them” (Harris
1968, p. 16). Thus, contiguity does not refer to single words but to well-formed sub-
sequences that constitute the sentence. The construction of the sentence, stated Harris,
must be formulated on the basis of entities that are larger than words “in respect to
which there are no noncontiguous phenomena” (Harris 1968, p. 32).

2.1.1 How the SD-W2 model reflects Harris’s constraints
Most DS models consider the context in its linear form when they find co-occurrences
of a word. In fact, texts reflect in space the linearity of the temporal dimension in which
speech is developed. However, this linear representation of a sentence does not reflect its
structure, which must be described in terms of grammatical relations. By exploiting the
syntactic relations emerging from a syntactic parsing process, the SD-W2 model aims to
consider the three constraints mentioned above as a guideline to extract the context of
words. Sentence 1 points out the differences between the two kinds of approach.

Example 1
The man who came into the bank with the gun and the mask shot the policeman.

According to Harris, Example 1 results from a set of transformation and reduction
(mainly reduction to pronoun, zeroing, and conjunction) over a set of kernel sentences,
each of which observes a specific partial order. The set of kernel sentences is as follows:

1. the man shot the policeman

2. someone came into the bank

1 Harris alternates between operands and arguments
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3. someone had a gun

4. someone had a mask

As indicated above, transformations and reductions do not alter the partial order,
so the information yielded by the kernel sentences must be preserved in Example 1.
Classical word-window models such as HAL or COALS consider windows of 4-10
words as being context linear. They produce co-occurrence values based on the linear
distance between words. In Sentence 1, for example, a five word-window selects the
sequence who came into the bank as the context of the subject man. They cannot even
relate the subject man and the operator shot because, in Example 1, the distance between
the subject and the main operator exceeds the window size.
Unlike classical word-window models, SD-W2 reflects the original structure given by
the partial order in the four kernel sentences. Considering that someone in 2, 3, and 4
refers to the man in 1, the syntactic context of the four kernel sentences in terms of
syntactic distance is the same. We have distance 1 between arguments (subject and
complement) and the operator and distance 2 between the subject and the complement.
The model can correctly connect the argument and its operators even if they are not
contiguous or if a large relative clause separates them.

Table 1
Linear and Syntactic distance between the word man and the other nouns of the Example 1

came bank gun shot policeman
Linear Distance 2 5 8 12 14
Syntactic Distance 1 2 2 1 2

Table 1 shows the linear and the syntactic distances between the noun man and the
Verbs and Nouns in the sentence. The verb shot is 12 words away from the subject and
cannot be included in the context of the noun by a 5 or 10 word-window. Our model
captures this relationship in the same way that it captures the relation between man and
the verb of the relative clause, came.

In addition, if the sentence were subject to additional transformations (the policeman
was shot by the man who came into the bank with the gun and the mask), the distances remain
unaltered, and the context of the word man is preserved.
Our model takes advantage of the dependencies between the words in the sentence
that emerge from the automatic parsing in order to consider non-linear relations in the
context selection. In this way, we can easily relate the operator with all its arguments,
even if they are non-adjacent or represented by a pronoun. Only a model with these
characteristics can capture the semantic structure of the sentence because its meaning
depends on both syntax and semantics and the relation between them. A distributional
semantics model cannot consider the sentence as a linear concatenation of elements
because the semantic structure that underlies the syntactic structures is not linear. The
context of a word must be considered as its partial order and must remain unaltered
after reduction or transformation.

Since the 1990s, a relative small number of dependency-based models have been
presented, (Padó and Lapata 2007; Grefenstette 1992; Lin 1997; Strzalkowski 1994).
These models seek to exploit syntactic dependency so as to obtain a more precise
simulation of Human knowledge-learning phenomena. There is no empirical evidence
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for the supremacy of this kind of model in general tasks (Kiela and Clark (2014), and
Lapesa and Evert (2017) reports substantially comparable results). In addition, syntactic
models generally require a large amount of pre-processing. Nevertheless, thanks to
improvements in syntactic parsers and computing power, we feel that using syntactic
data to perform similarity computation is of primary importance.

In the next section, we will provide a rapid overview of the DS models that have
most influenced our work.

3. Related Works

In section 2, we analyzed Harris’s theories on meaning and the relation between syntax
and semantics and how he directly or indirectly influences later theories.

Harris’s distributional hypothesis is rooted in structuralist theories and in Saus-
sure’s concept of valeur (Sahlgren 2008, p. 5). The differential view of meaning that
characterized Harris and, earlier, Bloomfield is based on the idea that signs are identified
by their functional differences (the sign’s valeur). A sign assumes a valeur by virtue
of its “being different from other signs”; it therefore emerges only in a system and
cannot exist in isolation. Saussure considered two kinds of relation in which functional
differences emerge. Syntagmatic relations concern connections between words that co-
occur (in praesentia); paradigmatic relations concern substitution, and related words that
do not co-occur (in absentia).
According to this difference, Sahlgren (2008) classified distributional models as Syntag-
matic or Paradigmatic models.

The first family of models focuses on Sentence Meaning. These models study pol-
ysemy, disambiguation, and semantic compositionality from a distributional point of
view. Disambiguating polysemous words cannot be addressed with a traditional ap-
proach based on formal semantics, such as the standard Distributional Semantics Mod-
els (Baroni, Bernardi, and Zamparelli 2014). There are two predominant approaches: the
first encodes all relevant information for a given word and then uses context to find the
right meaning. The second builds different vectors for each word sense (Boleda 2020).

Related to the concept of paradigmatic and syntagmatic relations is the classifica-
tion of first-, second- and third-order techniques produced by Grefenstette (1994). The
author defines first-order techniques as those that look at the local context to discover
what other words can be found among the neighbors of a given word. Second-order
techniques look for terms that share the same environments. Third-order techniques
create semantic groups of similar words by manipulating the list of similar words
produced by a second-order technique.

Distributional Semantics Algorithms based on Harris’s distributional hypothesis
can be classified in the second family of models, paradigmatic models, or second and
third-order techniques.
As pointed out in section 1, these models can be classified by using different criteria
(Lenci 2018): if we consider the context selection, we can classify them into Word-Based
models and Document-Based models. While document-based models consider a whole
document as the context, word-based models take a variable number of words.

In the last few years, several models based on neural network algorithms have
appeared. Since the introduction of Word2Vec (Mikolov et al. 2013b), these so called
predict models (Baroni, Dinu, and Kruszewski 2014), have demonstrated their superiority
over traditional models.

More recently, deep neural networks have been applied to traditional and predict
models in order to overcome the idea that each token must correspond to a vector
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(Peters et al. 2018): these latest-generation models represent a word with a number of
vectors equivalent to the different sentence contexts in which it appears. For this reason,
these models are called contextualized word embeddings.
Contextualized models work by learning the vectors as a function of internal states of
a pre-trained encoder (Chersoni et al. 2021) such as Long Short Term Memory (LSTM)
for feature-based approaches (Peters et al. 2018), or Transformers for fine-tuning ap-
proaches (Devlin et al. 2019). In particular, BERT (Devlin et al. 2019) and ELMo (Peters
et al. 2018), became very popular in the last years because offers generalized solution to
many computational linguistic tasks with very high performances.

The model proposed in this paper does not take this kind of technology into
consideration. We aim to demonstrate that the influence of syntax on the generation
of semantic word matrices could improve the results of DS models, regardless of the
family the model belongs to.

As was illustrated in section 2, a large part of models consider words that belong
to the same document or sentence as co-occurring. These models do not make use of
linguistic data. However, many other models are built in such a way that linguistic
knowledge affects the collection of distributional information. These models aim to use
part of speech tags, lemmas, or dependencies. Since the proposed model is a word-
based dependency model that explores paradigmatic relations, we will present a rapid
overview of Distributional Semantics algorithms that influence our work.

3.1 Window-Based Models

Our overview begins with Hyperspace Analogue to Language (HAL) (Lund and
Burgess 1996), which is considered one of the most influential Distributional models
(Lenci 2008).

In HAL, the semantic similarity between two words is calculated by comparing
word-vectors with Euclidean distance measures, extracted from a large co-occurrence
matrix. HAL reads the corpus through an n-words window to generate the co-
occurrence matrix. The window size suggested by the authors ranges between 5 and
10 words, and the corpus must include a large set of heterogeneous texts.

The authors use a lexicon of the 70,000 most frequently used terms of English to
generate a HAL matrix with a dimension of 70,000 X 70,000 (Burgess 1998). Each word
vector is processed with a multidimensional scaling algorithm to transform it into a
bi-dimensional pictorial representation of the word. This procedure generates semantic
knowledge by grouping semantic neighbors and grammatical knowledge. The corpus
used to generate the matrix is 300 million words of English text from Usenet news-
groups. This methodology makes it possible to represent the semantic meaning of words
and bring out the characterization of a variety of aspects of lexical ambiguity (Burgess
2001). HAL exerted a major influence on many later models (Audet and Burgess 1999;
Azzopardi, Girolami, and Crowe 2005; Rohde, Gonnerman, and Plaut 2006).

In particular, Correlated Occurrence Analogue to Lexical Semantics (COALS) (Rohde,
Gonnerman, and Plaut 2006) achieves considerably better performance levels. In HAL,
the authors believe that high-frequency columns make an excessive contribution to the
distance measure. COALS employs a normalization strategy that solves this issue. The
model is set on a flat 4-word window and computed on the 100,000 most frequent words
as columns and 1 million rows. Once the 4-word window completes the matrix building
process, the co-occurrence value is replaced with a value calculated as a Pearson Cor-
relation between each row. The Pearson Correlation measures the linear dependence
between two variables. It is one of the first measures of correlation and remains one of

70



Maisto A. Extract Similarities from Syntactic Contexts

the most widely used measures of relationship (Schober, Boer, and Schwarte 2018). The
Pearson Correlation generates values in a -1 to 1 range, in which -1 is a total negative
correlation, 1 is a total positive correlation, and 0 represents the complete absence
of correlation. The authors transform all negative values into 0 and square all other
values. By setting all negative values to 0, the authors obtain a scattered matrix, losing
information on anti-correlated words that do not generate similarity values between
words. Conversely, by squaring all positive values, the importance of many small values
is exalted in comparison to the few larger ones.

As regards vector length, the authors choose to eliminate purely syntactic words
such as determiners or punctuation symbols, using a 14,000 columns matrix. Finally,
vector similarity is calculated by using the Pearson Correlation once again.

The model was tested on several tasks, including word-pair similarity ratings,
multiple-choice vocabulary tests, yielding a better performance than other state-of-the-
art models. The results were also confirmed in Jurgens and Stevens (2010), who compare
different algorithms.

A different Window-Based family of models employs a Random Indexing approach
(Kanerva, Kristoferson, and Holst 2000). Random Indexing produces low-dimensional
random vector representations of each context. When the word-window scans the
corpus, each time a word occurs in a context, the random vector is added to the context
vector (Sahlgren 2005). Since the dimensionality of the random vector is reduced, the
context vectors will also have the same dimension. This method makes it possible
to build the matrix incrementally, with low-dimension and with any kind of context
selection method.

Lapesa and Evert (2014) investigated the impact of various Word-window model
parameters on a number of traditional semantic tasks. Three parameters appear to have
a particularly significant impact on a model’s performance: score (how the algorithm
assigns a co-occurrence value to the words in the word-window), transformation (how
the co-occurrence scores are then transformed so as to reduce the features’ asymmetry)
and distance metric.

The impact of those parameters, and in particular of transformation can explain the
better performance of COALS compared to HAL: since the other parameters are similar
for both models, the introduction of a matrix transformation is the primary distinction
between them. While HAL does not provide any kind of transformation of the matrix,
COALS employs Pearson’s transformation.

Other parameters (corpus, window size, dimensionality reduction) also exerted an influ-
ence, but they varied more widely in response to the task. For example, the Difference of
Means between reduced and unreduced models is quite substantial for the TOEFL task;
for the other tasks, the use of the WaCkypedia corpus (Baroni et al. 2009) yields better
results.

3.2 Dependency-Based Models

Dependency-Based Distributional Semantics, also known as syntax-based distributional
semantics, inspires a class of algorithms that use linguistic annotation to improve the
results of similarity measure extraction. In general, we can consider these models as
belonging to word-based models because only words belonging to the same sentence
are included in the context. Unlike HAL, this kind of method does not assign co-
occurrence values according to nearness between words, but they take advantage of
the syntactic relations shown by a syntactic parser.
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Regardless of the amount of pre-processing required, the differences between
syntactic models and word-window models in terms of performance are difficult to
judge. Traditional Word-window models, also known as bag-of-words models, gener-
ally achieve the best performance in classification tasks, while bag-of-arguments models
(Dependency models) perform better in predicting argument expectations (Chersoni et
al. 2017). Levy and Goldberg (2014) train the word-window model SkipGram (Mikolov et
al. 2013b) and perform their experiments with a dependency-based context. They show
that the dependency-based context yields a different embedding, such as functional
similarities of a cohyponym nature.

The first dependency-based algorithm to return promising results in distributional
semantics was presented by Grefenstette (1992). The paper’s idea was to take advantage
of the growing availability of syntactic parsers to select the syntactic context of words.
The model, called Sextant, derives similarity measures that consider the overlapping of
all contexts associated with a target word over the corpus.

Other influential syntactic models were presented by Strzalkowski (1994) and
Lin (1997): Strzalkowski (1994) presents a dependency-based methodology included
within an information retrieval task. The authors propose the extraction of a set of
head+modifier pairs from a parsed text, which are used as occurrence contexts for each
term included in them. Two terms that share some modifiers but appear in a few distinct
contexts receive a similarity coefficient of between 0 and 1. Lin (1997) proposes a Word
Sense Disambiguation algorithm based on a Similarity Measure calculated through a
syntactic context. The local context of a word is defined as a triple of dependency
relations in which the word is the head or the modifier. The authors construct Local
Context Databases by extracting this kind of relation and using word frequency and the
likelihood ratio to give a distance value. Each target word is described as a triple (type,
word, position) and a set of word-frequency-likelihood-triples.

Inspired by the works of Lin and Strzalkowski, Padó and Lapata (2007) developed
a model based on the notion of paths. Paths are sequences of dependency edges that
connect two words, the use of which makes it possible to represent both direct and indi-
rect relationships between words. There are three new parameters related to paths: the
Context selection function determines which path in the dependency graph contributes to
the representation of the target word; the path value function assigns weights to paths, for
instances, giving more weight to paths containing subjects and objects; the basis mapping
function establishes the size of the semantic space. In their work, the authors list three
different context selection functions, minimum, medium, and maximum, respectively
of length 1, length <=3 and length <=4, and three path value functions: plain, which
assigns 1 to every path, length, which assigns a value inversely proportional to the
length of the path and gram-rel, which ranks paths by using a value that reflects the
salience of their grammatical relations (i.e., subjects are more salient than objects). The
authors also define an optimal dependency-based model which uses the medium context
selection function and the length path value function, with 2000 basis elements. They
train the model on the British National Corpus (100 million words) and test it on three
tasks: Single-word Priming, Detection of Synonymy, and Sense Ranking. The model
achieves performance levels comparable to or higher than state-of-the-art models in all
the selected tasks.

More recently, Baroni and Lenci (2010) proposed an approach called Distributional
Memory in which the authors seek to solve the problem of building a different distri-
butional model for each different semantic task. The methodology adopted entails the
extraction of co-occurrence as a ternary geometrical object of the kind word-link-word,
called the third-order tensor. The tuple word-link-word is made up of two content
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words and a syntagmatic co-occurrence link between them: for example, the tuple
<marine,use,bomb> denotes that the word marine co-occurs with the word bomb, with
the word use representing the syntagmatic link between the two.

Distributional Memory provide two different models: the dependency model uses a
set of links for noun-verb, noun-noun and adjective-noun pairs, which includes verbs (the
soldier is reading a book ! <soldier, verb, book>), the subject of intransitive verbs (the teacher
is singing ! <teacher, sbj_intr, sing>), the noun modifier (good teacher ! <good, nmod,
teacher>), etc.

The lexical model includes complex links, which take into account the morphological
features of the pair words: POS, number, tense, presence of articles, adjectives, adverbial
modifier, auxiliary or modal verbs. For example, the sentence The tall soldier has already shot
is represented by the tuple <soldier, sbj_intr+n-the-j+vn-aux-already, shot>. The suffix of
the link shows that the first word (soldier) is a singular noun (n), definite (the) and has an
adjective (j), and that the second word (shot) is a past-participle (vn) with an auxiliary
(aux) and is modified by an adverb (already).

Subsequently, matrices are generated directly from the tensor to perform a specific
semantic task in a defined space. The model was tested on different semantic tasks
and achieved a performance that, in some cases, was slightly lower than other models
constructed ad hoc for the task. Nevertheless, the advantage of using a single general
model that does not need to be retrained for each new task compensates for the lower
performance.

Dependency-based models have also been tested on a variety of tasks to under-
stand how different parameters affect their performance Lapesa and Evert (2017). The
Dependency-based models work similarly to the window-based models in terms of
performance and best values for a significant number of parameters (metric, score,
transformation).

4. The SD-W2 algorithm

In order to perform a distributional analysis and calculate the similarity values from the
context of the words, we choose to include a level of syntactic analysis in our model.
This makes it possible to draw the real connections between words and overcome the
linear vision of the sentence adopted by the word-window models.

These models extract similarity among words by calculating the similarity of their
likelihood: if two words appear near the same group of words (i.e. they have similar
contexts) in large corpora, then they have similar meanings. Word-based models calcu-
late the context as a connection value between a word and all the words immediately
adjacent to the target word or within a certain distance from it.

Nevertheless, as highlighted in section 2, Harris explicitly states that analysis of the
meaning must rely on the first constraint (partial order). The partial order constraint
acts over different hierarchies of linguistic elements: at the higher level, it works on
operators that act over lower operators (i.e the verb said, which acts over other operators
such as eat in sentences like "I said that sheep eat grass"); it acts on operator-argument
relations (i.e. the verb sleep and its argument child in "the child sleeps"); but there also
exists a hierarchical relation between the noun reading and the noun book in a sequence
like the reading of the book. Harris (1957), assumed that the sentence "the reading of the book
is fast" results from a set of transformations over two kernel sentences:

r k1: the reading is fast
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r k2: someone read the book

The transformation involved are the following:r S $ N of k2: the reading of the book by someoner k1 overlap with k2: the reading of the book by someone is fastr zeroing of "by someone": the reading of the book is fast

In other words, the k2 kernel is nominalized (from to read to the reading of ) and
is overlapped with k1. Finally, reduction allows the sequence by someone to be deleted
because it brings a very small amount of information (there is always someone that
reads a book).

Besides, reduction and transformations hide elements that appear with high fre-
quency values in specific contexts and change the shape of a sentence, leaving syntactic
relations unaltered. In this way, reading and book were also involved in an operator-
argument relation and must be taken into account in the semantic analysis of the
sentence. At a syntactic level, the distance between reading and book in the final sen-
tence corresponds to the distance between read and book in k2. It is the nature of the
relationship that has changed.

Based on these assumptions, the proposed model attempts to extract co-occurrence
values by considering the syntactic connections between words, regardless of typology
or direction. The underlying idea is that the syntactic context of a word can be calculated
on a parsed text by considering a measure derived from the concept of Syntactic Dis-
tance (Liu, Xu, and Liang 2017). As a quantified value, it works as a word-window that
scrolls the text, not in its linear order but in its syntactic partial order. In exactly the same
way as other models, the syntactic distance is converted into a numerical value which
propagates through the network of relations described by the parsed text as shown in
figure 1.

As illustrated by the figure, the distance is equal to the number of nodes in the syn-
tactic sentence graph separating the target word from the other words in the sentence.
At each distance, there may appear as many words as there are incoming and outgoing
connections for a node.

4.1 Description of the Algorithm

The algorithm relies on the input of three external elements:

1. a base-dictionary that includes all the terms for which a vector
representation is sought. We used a non-flexed dictionary and each vector
will represent a single Lemma;

2. a dimension-dictionary that includes the terms representing the
dimensions of each vector, i.e the columns of the matrix. This dictionary
must also contain non-flexed terms;

3. a collection of documents in CoNLL format. CoNLL (Buchholz and Marsi
2006) provides a great deal of linguistic information about the text in table
form. The rows of CoNLL tables represent the words that make up the
document. The columns include an ID number, the FORM or token,
LEMMA, universal POS Tags, HEAD, which indicates the ID of the

74



Maisto A. Extract Similarities from Syntactic Contexts

Figure 1
Syntactic Distance values for the word Kennedy in the sentence "Kennedy served as president of
the United States until his assassination"

headword, and DEPREL, which indicates the nature of the dependency
relation.

The algorithm proceeds by mapping the two dictionaries with a number that corre-
sponds to the column/row of the matrix. Then, the algorithm takes into consideration
a single sentence.

Algorithm 1 reports a description of the method that converts the input CoNLL
sentence into a Sentence Graph Structure (SGS).

Algorithm 1 generation of the SGS from the CoNLL Sentence
Input: conllSentence

1: for line in conllSentence do
2: add [line(ID),line(HEAD)] to SGS
3: add [line(HEAD),line(ID)] to SGS
4: end for

Output: SGS

SGS is an edge graph in which the connections are represented by two values:
the ID (source) and the HEAD (target) of each CoNLL row. In the SGS, connections
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have no direction because the syntactic distance is calculated for each pair of connected
elements, regardless of the nature and direction of that connection. In order to represent
the bi-directionality of the SGS simply, the algorithm also inserts the inverse connection
of each arc into the graph structure.

By way of an example, we consider the sentence in CoNLL format of table 2.

Table 2
Parser data in CoNNL format of the sentence “Kennedy served as president of the United States
until his assassination”

ID FORM LEMMA POS HEAD DEPREL
1 Kennedy Kennedy NNP 2 nsubj
2 served serve VBD 0 ROOT
3 as as IN 4 case
4 president president NN 2 obl
5 of of IN 8 case
6 the the DT 8 det
7 United united NNP 8 compound
8 States states NNP 4 nmod
9 until until IN 11 case
10 his his PRP$ 11 nmod:poss
11 assassination assassination NN 2 obl

The word president points to the word Kennedy and, consequently, they are consid-
ered to have distance 1; but president also has distance 1 with the words that point to it
(as, state). From the word president, whose ID number is 4, generates the arc {4,2}; since
the connections are bidirectional, it also generates {2,4}. In addition, the words that point
to president generate the arcs {3,4}, {4,3}, {8,4}, and {4,8}.

The SGS of the sentence in tab 4.1 will includes the following list of edges:

{0,2};{1,2};{2,0};{2,1};{2,4};{2,11};{3,4};{4,2};{4,3};{5,8};{6,8};
{7,8};{8,4};{8,5};{8,6};{8,7};{9,11};{10,11};{11,2};{11,9};{11,10}

Once the algorithm has processed the dictionaries and created the SGS, it removes
all the SGS edges that involve the ROOT (all the pairs that include a zero). At this
point, the algorithm starts the syntactic context analysis by inserting the sentence co-
occurrence values into the matrix. Algorithm 2 describes the syntactic co-occurrence
analysis.

The loop takes as input the SGS, the target word and a structure that maps the ID
of each word with its POS and Lemma. It also needs two parameters:

r Syntactic Distance: the variable windowSize corresponds to the size of the
syntactic window taken into account. This value ranges from 1 to 5.r Weighting function: the function that determines the weight to assign to
co-occurring words according to their distance.

In the first part of algorithm 2, it extracts the words directly connected with the
target word. It assigns the value 1 to the connected words and stores their ID values
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Algorithm 2 SyntCoOccAnalysis ( SGS(Sentence), targetWord(ID,Lemma,PoS) )
Input: SGS[value.0,value.1], targetWord[ID,LEMMA,POS]
Parameters: windowSize, weightingFunction

1: linearDistance = 1
2: targetWordMass = setMass(targetWord[POS])
3: for edge in SGS do
4: if edge[value.0] is equal to targetWord[ID] then
5: distances[edge[value.1]] += linearDistance
6: add edge[value.1] to propagation
7: remove targetWord[ID] from propagation
8: windowSize = windowSize-1
9: end if

10: end for
11: while windowSize > 0 do
12: linearDistance =+ 1
13: for id in propagation do
14: for edge in SGS do
15: if edge[value.0] is equal to id then
16: distances[edge[value.1]] += linearDistance
17: add edge[value.1] to propagation
18: remove id from propagation
19: windowSize = windowSize-1
20: end if
21: end for
22: end for
23: end while
24: coOccurrenceValues = WeightingCoOcc(distances,weightingFunction)
Output: co-Occurrence Values of a Sentence (coOccurreceValues)

to continue the propagation. Then, according to the value of windowSize, it starts a new
loop for all the IDs in the propagation list.

The algorithm assigns co-occurrence values after calculating the distances between
the target word and the other words in the sentence (Algorithm 3). The Weighting
Function may be of two types: a linear function that assigns a decreasing value to the
words as the distance increases the target word or a GRAV2 function based on the POS
of the target word.

Finally, the algorithm actualizes the general matrix, adding the values generated for
the target word for each context word and repeating the loop for the next target word.

When the corpus has been entirely processed, the algorithm converts the co-
occurrence matrix into a correlation matrix. In the COALS algorithm, the Pearson
Correlation is performed over the original matrix so as to generate the conditional rate
instead of the raw rate of word-pair co-occurrence. The authors claim that computing
Pearson’s correlation between the occurrence of a word a and a word b can express the
tendency of b to occur "more or less often in the vicinity of a than it does in general".

2 We will illustrate the GRAV function in section 4.2.2
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Algorithm 3 WeightingCoOcc ( SyntDistances(Sentence), weightingFunction )
Input: distances Map
Parameters: weightingFunction

1: for key in distances do
2: contextWord = sentenceWord[key].value(LEMMA)
3: if weightingFunction is Linear then
4: coOccurrenceValues[contextWord] = (distances[key]*-1)+(WindowSize+1)
5: else if weightingFunction is GRAV then
6: coOccurrenceValues[contextWord] = Mass2/distances[key]
7: end if
8: if coOccurrenceValues[contextWord]<0 then
9: coOccurrenceValues[contextWord] = 0

10: end if
11: end for

This normalization converts the co-occurrence values into values that range be-
tween -1 and 1. Converting all resulting negative correlations, which represent anti-
correlated words, to 0, the matrix becomes more sparse and the model’s performance
may improve. Rohde, Gonnerman, and Plaut (2006) compared the COALS algorithm
with a similar algorithm like HAL, which differs from the former mainly in this feature,
obtaining considerably better results.

Taking into account the sentence presented in table 2, a word window of 5 and a
Linear weighting function, we obtained the matrix shown in table 3.

Table 3
The Matrix generated by the presented model of sentence in table 2

Kennedy served as president of the United States until his assassination
Kennedy 0 5 3 4 2 2 2 3 3 3 4
served 5 0 4 5 3 3 3 4 4 4 5
as 3 4 0 5 3 3 3 4 2 2 3
president 4 5 5 0 4 4 4 5 3 3 4
of 2 3 3 4 0 4 4 5 1 1 2
the 2 3 3 4 4 0 4 5 1 1 2
United 2 3 3 4 4 4 0 5 1 1 2
States 3 4 4 5 5 5 5 0 2 2 3
until 3 4 2 3 1 1 1 2 0 4 5
his 3 4 2 3 1 1 1 2 4 0 5
assassination 4 5 3 4 2 2 2 3 5 5 0

The matrix shown in table 3 is dense. Matrix density is particularly pertinent to
short sentences, but the algorithm generally produces denser matrices with high values
of word-window because, while words in syntactic structures are much more intercon-
nected, a value higher than 5 tends to propagate throughout the sentence. This is an
obvious consequence of using syntactic parsing data in matrix construction (Sahlgren
2008).

Table 4 shows the results of applying the Pearson Correlation to the Matrix pre-
sented in Table 3. Matrix density decreases markedly in Table 4. The matrix becomes
even more sparse when lower values of word-window are used.
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Table 4
The matrix after Pearson Correlation

Kennedy served as president of the United States until his assassination
Kennedy 0 0,219 0,086 0,116 0 0 0 0 0,168 0,168 0,179
serve 0,219 0 0,112 0,105 0 0 0 0 0,192 0,192 0,179
as 0,086 0,112 0 0,201 0,119 0,119 0,119 0,136 0 0 0
president 0,116 0,105 0,201 0 0,146 0,146 0,146 0,133 0,014 0,014 0
of 0 0 0,119 0,146 0 0,248 0,248 0,252 0 0 0
the 0 0 0,119 0,146 0,248 0 0,248 0,252 0 0 0
united 0 0 0,119 0,146 0,248 0,248 0 0,252 0 0 0
states 0 0 0,136 0,133 0,252 0,252 0,252 0 0 0 0
until 0,168 0,192 0 0,014 0 0 0 0 0 0,295 0,298
his 0,168 0,192 0 0,014 0 0 0 0 0,295 0 0,298
assassination 0,179 0,179 0 0 0 0 0 0 0,298 0,298 0

4.2 SD-W2 parameter selection

In a preliminary experimentation phase, we tested different criteria for the parameter
selection of the presented algorithm. These parameters are:

r Syntactic Distancer Weighting function

In addition, we tested the Singular Value Decomposition (SVD) algorithm (Rohde
2002) in order to vary the dimensionality of the final matrix. SVD is a method for the
linear decomposition of a matrix into independent components adopted for the first
time by Landauer and Dumais (1997) in Distributional Semantics for Latent Semantic
Analysis. The LSA model uses the SVD algorithm to produce a better simulation of
human word-learning. The authors claim that SVD embodies the kind of inductive mecha-
nisms that they want to explore and provides a convenient way to vary dimensionality. Since
SVD did not greatly change performance in our preliminary test, we decided not to add
a dimension reduction algorithm to our model.

4.2.1 Syntactic Distance
The selection of window size in word-based distributional semantics models can con-
sider a neighborhood ranging from one to 1000 words (Sahlgren 2008). Schutze (1992a)
proposes a window size of 1000-1200 words, claiming that word size is more important
than the number of words taken into account in context construction. Yarowsky (1992)
and Gale, Church, and Yarowsky (1995) use 100-word windows. Lund and Burgess
(1996) use 10-word windows in HAL and Rohde, Gonnerman, and Plaut (2006) in
COALS, suggest using 4-word windows. Although there are no word-windows in Syn-
tactic methods, they extract co-occurring words from a dependency graph by defining
a list of paths. The length of this paths plays the same role as the dimension of the
word-window in linear models.

With this work we present a syntactic model in which we replace specific depen-
dency paths with a generic syntactic window in which all the words related with a
target word within a variable syntactic distance are included in its context. The value
of Syntactic Distance, in this way, work exactly as a variable word-window, with the
difference that it was unclear how many words the model would include in the context.
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For example, if we can find more than one word in a sentence at a distance of 1, the
number of words taken into account grows when this distance value increases.

The distance value used in our experiment ranges from 1 to 5.

4.2.2 Weighting Functions
We tested the system using a linear weighting function in which the co-occurrence value
ranges from the dimension of the word-window to zero, decreasing once the syntactic
distance grows. With d = SyntacticDistance and w = window � size the co-occurrence
value c is calculated as:

c = (�d+ (w + 1))

In the sentence Kennedy served as a president of the United States until his assassination,
taking into account the word Kennedy as Target Word and a window-size of 2, the algo-
rithm assign �1 + (2 + 1) = 2 to syntactically adjacent words (served), �2 + (2 + 1) = 1
to words at distance 2 (president and assassination), �3 + (2 + 1) = 0 to word at distance
3, and so on, setting all the negative values to zero.

In order to improve the variability of co-occurrence values, we also tested a different
function, related to the words’ syntactic features and using the parser graph. We were
inspired by the idea that some words with certain POS tags (i.e. function words) tend
to be very frequent and do not convey semantic information (Rohde, Gonnerman, and
Plaut 2006). In COALS, these words were excluded from the final matrix. Our aim is to
preserve this information but introduce proportional weights for each POS.

The parsed sentences are graphs in which words are nodes and relations are di-
rected edges. By considering POS tags as nodes, we extract the total of the relationships
in which each POS tag is involved in a section of one million words of the British
National Corpus (BNC), parsed with the Stanford Core-NLP Parser Package.

Since we convert dependency graphs into undirected graphs (we take into account
relations both pointing towards a node and starting from the node), we choose to use
the total percentage of relations (in+out) as the Mass of a word. In our opinion, this value
reflects the centrality of the POS tag in the sum of sentence networks of the corpus and
proposes a set of values with greater significance and variability.

The main idea is to give each word a weight based on its influence on the syntactic
graphs. Nouns and Verbs, for example, have a high Mass value that reflects their
centrality in the structure of the sentences.

Definition 2
The Mass of a word is equivalent to the ratio of the number of incoming and out-
coming arcs of a given POS and the total number of relations in a 1 million word Corpus
extracted from the BNC.

For example, Nouns are involved in 41% of the relations in the first one million
words of the BNC. This means that out of 100 arcs in the sum of the dependency graphs,
55 point to and 27 start from a Noun. If we observe the dependency graphs, we will see
that Nouns are pointed to by Determiners (the book), Adjectives (beautiful girl) and other
Nouns (city center). Conversely, they point mainly to Verbs, Nouns and Prepositions. If
we take Determiners or Adjectives into account, these are involved in 5% and 7% of
edges and, in the vast majority of cases, they point only to Nouns.

When we score the co-occurrence of the terms included in our matrix, we give
higher values to categories that we consider central to our semantic analysis, without
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completely eliminating categories that include non-content words. In the final matrix,
this difference only affects rows, because the score is influenced only by the mass of the
target word. In addition, we square the values so as to increase the difference between
the POS tags and to obtain better results.

The influence of the Mass of a word must decrease as the distance increases, so the
weight function, called GRAV, is calculated using the following formula:

GRAV = Mass2t/Distancet,w

Masst indicates the weight of the POS tag of the Target Word and Distancet,w is the
syntactic distance between the target word and the co-occurring word. In this perspec-
tive, each word may be considered an object with a certain syntactic Mass and produces
an attraction over its neighbor words that is stronger if the POS of the word tends to be
central in sentence networks. The attraction decreases as the distance increases.

In the sentence Kennedy served as a president of the United States until his assassination,
taking into account the word Kennedy as Target Word and a window-size of 3, the algo-
rithm assign 41, 262/1 = 1.702, 3876 to syntactically adjacent words (served), 41, 262/2 =
851, 1938 to words at distance 2 (president and assassination), 41, 262/3 = 567, 4625 to
word at distance 3. Conversely, the word the will obtain a co-occurrence value of
5, 322/1 = 28, 5156 with its adjacent word United, 5, 322/2 = 14, 2578 with words at
distance 2 and 5, 322/3 = 9, 5052 with words at distance 3.

4.3 Best Configuration

The algorithm presented in the previous section was developed in Java, using the
sspace package developed at the Natural Language Processing group at UCLA3. The
package contains algorithms and tools for constructing a distributional model and a set
of compiled well-known classic algorithms such as LSA, HAL, DVS, and COALS.

In order to test the parameter of the model, we use the British National Corpus
(Leech 1992), a 100 million-word Corpus of English, including written and spoken
language. The corpus was parsed with the Stanford Core-NLP Parser Package (Manning
et al. 2014).

The dictionary we used as Base-Map includes more than 18,000 words with high-
frequency values extracted from the BNC4 (more than 400 occurrences in BNC), which
correspond to 12,024 lemmas.

With a view to testing our model, we defined an optimal model with a parameter
setting that maximizes the experimental results. To test the parameter selection, we used
the Rubenstein and Goodenough similarity test (Rubenstein and Goodenough 1965),
as suggested by Padó and Lapata (2007). The original test calculated the correlation
between the evaluations of semantic similarity performed by groups of humans on
two lists of 24 theme words. The experiment involved 65 noun pairs scored on a 0-4
scale. The original model calculated a Pearson correlation (Pearson’s r) coefficient of
0.85 when applied to similarity ratings between annotators.

We obtained the best results with no matrix reduction applied. The differences
between weighting functions and syntactic distance (D) are shown in table 5.

3 The sspace package is freely downloadable at https://github.com/fozziethebeat/S-Space/wiki
4 Frequency list download at http://www.kilgarriff.co.uk/bnc-readme.html
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Table 5
Evaluation of different parameters application on Rubenstein and Goodenough test

Syntactic distance Linear WF GRAV WF
1 0.65 0.64
2 0.656 0.661
3 0.63 0.64
4 0.61 0.63
5 0.59 0.62

The results presented in table 5 show a minimal variation between the applica-
tion of the two weighting functions, with a slight advantage for the GRAV function.
Conversely, the syntactic distance shows bigger variations with a clear propensity for
models with the syntactic distance set as 2. The selected parameters were:

r words and Dimensions: 12,024r Distance: 2r Weighting function: GRAV

Once the parameters producing the best results are established, we also train the
model on a larger corpus, the WaCkypedia English corpus (Baroni et al. 2009), a 2009 dump
of English Wikipedia, cleaned and parsed with MaltParser (Nivre, Hall, and Nilsson
2006), of about 800 million tokens.

5. Experiment

This section presents a series of experiments on which the methodology described in
section 4 was tested. As announced in section 1, our results on three tasks will be
compared with other word-window models. Since we found an optimal configuration
for our parameter, we retrain the model using a larger corpus.

The experiments we report in the paper are related to the classic semantic tasks
addressed by many authors in DS literature:

r Semantic Similarity: a set of experiments in which the algorithm must
express a similarity value between two words in a list of pairs already
classified by humans. The correlation between the values given by the
model and the human’s values represents the algorithm’s assessment
score.r Synonymy: this kind of text is based on synonymy tests generally
proposed to foreign students of English during their assessment. The test
consists of choosing the correct synonym for a word from four alternatives.r Single-Word Priming: the test consists of finding the strongest association
between a set of words representing six different lexical relations
(synonymy, antonymy, super-subordination, category coordination,
conceptual association, and phrasal association).
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r In addition to these experiments, we will introduce a new task related to
the concept of selection as conceived by Harris. This measures the
similarity of a group of nouns belonging to a specific class with a verb that
selects that class as the subject or the object.

In order to gain a clearer idea of the obtained results, we compared the two trained
models (WaCkypedia and BNC) with other state-of-the-art models:r Contextualized Models such as BERT (Devlin et al. 2019) or ELMo (Peters

et al. 2018), as reported in Lenci et al. (2022) and Wang, Cui, and Zhang
(2021);r the results of similar models such as COALS and DVS, as reported in its
original papers and by Jurgens and Stevens (2010);r the results of classic models such as LSA and HAL, as reported by various
sources;r the results of COALS and Word2Vec (Mikolov et al. 2013b, 2013a) trained
on the BNC corpus.

The data set and the experiment on the argument selection task will be presented in
section 5.4; section 5.1 shows the results of our model on Semantic Similarity Task, in
5.2 we present the experiments on synonymy tasks and in 5.3 we replicate the semantic
priming experiment presented in Padó and Lapata (2007) using our model.

5.1 Semantic Similarity Task

Semantic Relatedness is an important research topic in NLP (Taieb, Zesch, and Aouicha
2020). To verify the effectiveness of semantic relatedness extraction methods, the com-
putational results are usually compared with human judgments. The cost of manual
annotation of relatedness values limits the size of this kind of evaluation data set.
Besides, a careful selection of the words is required.

We decided to test our algorithm on four Semantic Similarity data sets that have
been used as a test set by many other authors. In particular, we tested our optimal model
on the following data sets:r Rubenstein and Goodenough similarity pairs (Rubenstein and

Goodenough 1965) (RG65): this data set, described in section 4.3, is one of
the most frequently used in evaluating DS models on semantic similarity.
We compared our results with the results reported by Padó and Lapata
(2007); Rohde, Gonnerman, and Plaut (2006); Landauer and Dumais
(1997); Lund and Burgess (1996) and compared the evaluation of the same
models trained on different corpora presented by Jurgens and Stevens
(2010). In accordance with Rohde, Gonnerman, and Plaut (2006), we also
tested the model on a reduced RG data set of 52 pairs of words, produced
by deleting 5 ambiguous words.r Miller and Charles ratings (Miller and Charles 1991) (MC30): this is
another common similarity data set, which includes 30-word pairs of the
RG65 manually evaluated by 38 subjects. The words selected for the MC30
data set have higher frequencies than the original RG set. For this subset,
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we used both the original one and a reduced version with 5 ambiguous
words deleted and 24 pairs.r WordSimilarity-353 Test Collection (Finkelstein et al. 2001) (WS353): this
data set includes 353 pairs rated by 13 or 16 subjects on a 0-10 scale. The set
includes the MC30 pairs, proper names (such as Arafat or Maradona), word
associates that are not synonymous (tennis-racket), adjectives, or gerunds.
The words of WS353 are, in general, more common than those in RG.r SimLex999 (Hill, Reichart, and Korhonen 2015) (SL999): SimLex-999 is a
gold standard resource for semantic similarity tasks. Five hundred native
English speakers produced the resource: it contains 999 adjective, verb,
and noun concept pairs. The experiment was designed as shown in Hill,
Reichart, and Korhonen (2015), in order to compare the optimal model
with the performance presented in that paper on the whole set and
abstract-concrete subset and Adjective-Noun-Verb subset.

Table 6
Comparison of different algorithms on different Semantic Similarity Data Sets

Algorithm Corpus RG65 MC30 WS353 SimLex999
SD-W2 BNC 0.682 0.605 0.527 0.303
COALS BNC 0.569 0.453 0.427 0.22

DVS BNC 0.62 - - -
W2V (CBOW) BNC 0.678 0.647 0.566 0.324

SD-W2 Wikipedia 0.842 0.76 0.614 0.394
BERT.L4 BookCorpus and Wikipedia 0.81 - 0.62 0.55

BERT.avg Wikipedia 0.812 - 0.594 0.468
ELMo.avg Wikipedia 0.668 - 0.583 0.436

SG Wikipedia 0.752 - 0.610 0.394
CBOW Wikipedia 0.727 - 0.627 0.380

LSA Wikipedia 0.681 - 0.614 -
HAL Wikipedia 0.261 - 0.195 -

COALS USENET 0.682 0.671 0.626 -
HAL USENET 0.153 0.319 0.311 -
LSA USENET 0.656 0.731 0.599 -

In table 6, we present our results on the 4 Word Similarity tests included in the
experiment. We organized the table in three section on the base of the corpus used to
train the model.

The results of other algorithms were taken from Rohde, Gonnerman, and Plaut
(2006) for the models trained on the USENET Corpus (1.2 billion words); from Jurgens
and Stevens (2010) for LSA and HAL trained on WIKI corpora (respectively 600 and 900
million words); and from Padó and Lapata (2007) for the DVS model.

The scores for Contextualized Models were collected from two sources: Lenci et
al. (2022) analyzes three different types of BERT embeddings: BERT.F4 which uses the
sum of the embeddings from the first four layers; BERT.L4 which uses the sum of the
embeddings from the last four layers; and BERT.L which uses the embeddings from
the last layer. In all cases, the authors used the bert-large-uncased model (pretrained on
BooKCorpus5 and English Wikipedia). We report only the model which records the best

5 BookCorpus is a corpus of 11.038 unpublished books
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scores (BERT.L4).
Wang, Cui, and Zhang (2021) adopts three different methods to use static similarities
from BERT and ELMO, but we selected the one which obtained the best results (defined
as BERT.avg and ELMo.avg by the authors). From the same paper, we also report the
score of Skip-Gram (SG) and CBOW. All the models presented in Wang, Cui, and Zhang
(2021) are trained on a Wikipedia Dump (1.1 billion tokens).

For COALS-BNC we used the sspace package and set the same parameters specified
by the authors, 14,000 dimensions for each vector, 15,000-word vectors, and a list of syn-
tactic words and punctuation excluded from the calculation of the matrix. For W2V-BNC
we used the Python Gensim package6, which uses CBOW as the default model, with
automatic frequent phrases detection, a window-dimension of 5 and 200 dimensions.

In accordance with Rohde, Gonnerman, and Plaut (2006), we used the rank-order
Correlation (Spearman’s rho) to calculate the correlation between our results and hu-
man ratings, and we used the best-fit exponential scaling of similarity scores: scores of
less than 0 are set to 0, and positive scores are replaced by S(a, b)t where S(a, b) is the
similarity score obtained, and t is an exponential that maximizes the model’s correlation.
A value of t > 1 increases sensitivity at the high end of the rating scale and t < 1 at the
low end. We used a t = 0.7 for the SD-W2 model and W2V and 0.6 for COALS trained
on BNC. The similarity values have been generated using Pearson’s correlation for SD-
W2-BNC and Cosine Similarity for the other models (including SD-W2-Wiki).

Concerning SimLex-999, we also followed the experiment conducted by Hill, Re-
ichart, and Korhonen (2015) who tested their data set on a representative set of DS
models such as LSA, VSM (Kiela and Clark 2014) or Word2Vec (Mikolov et al. 2013a).
In table 7 we compare the correlation of both SD-W2 models with the correlation of
LSA and W2V trained on the RCV1 Corpus (⇠ 150 million words) (Lewis et al. 2004)
with two different window sizes (10 and 2) as reported by Hill, Reichart, and Korhonen
(2015), and with COALS and Word2Vec trained on BNC.

Table 7
Comparison of SD-W2, COALS-BNC, W2V, and LSA on SimLex-999

Algorithm SimLex-999 Most Associated 333 Adjectives (111) Nouns (666) Verbs (222) Concrete (250) Abstract (250)
SD-W2-Wiki 0.394 0.212 0.421 0.455 0.191 0.425 0.296
W2V-Wiki 0.414 0.260 - - - - -

SD-W2-BNC 0.303 0.107 0.413 0.359 0.08 0.315 0.227
COALS-BNC 0.220 0.017 0.338 0.253 0.034 0.212 0.200

W2V-BNC 0.324 0.057 0.463 0.342 0.170 0.339 0.369
LSA-RCV1 (2) 0.233 0.009 0.375 0.270 0.085 0.226 0.185

LSA-RCV1 (10) 0.238 0.070 0.272 0.298 0.008 0.325 0.209
W2V-RCV1 (2) 0.282 0.178 0.436 0.303 0.161 0.248 0.306
W2V-RCV1 (10) 0.266 0.176 0.406 0.278 0.114 0.236 0.309

Table 7 refers to different subsets of SimLex-999. The correlation for the whole set
is shown in the second column. The third column reports the value of a subset of 333
most strongly associated concepts, according to the University of South Florida Free
Association Database (USF) (Nelson, McEvoy, and Schreiber 2004). Association data
were generated by human subjects who produced a set of associated words for 5000
concepts.

6 https://radimrehurek.com/gensim/models/word2vec.html
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5.1.1 Discussion
In table 6 we present the results of our model compared with many state-of-the-art mod-
els, in relation to corpora of different kinds and dimensions. This comparison allows us
to study the importance of the corpus dimension and typology on the generation of
co-occurrence values. Starting from the models trained on BNC, we must underline
that the CBOW model of Word2Vec reaches higher results compared with SD-W2, for
all four data-sets. As pointed out also by Hill, Reichart, and Korhonen (2015), SimLex-
999 is notably more challenging than the other data-sets: nevertheless, the results of W2V
trained on BNC also surpass the scores of the same model trained on RCV1 as reported
by Hill, Reichart, and Korhonen (2015) and presented in table 7. Concerning the other
data-sets, SD-W2 achieves better results than COALS and DVS, from which it draws
inspiration and obtains similar results to W2V.

If the corpus dimension is increased, the results of our model become comparable
to those of the contextualized models. Regarding the smaller data-sets, SD-W2 shows
the best results with a precision of 0.842, overcoming both BERT (0.81) and ELMo (0.69),
but also the two Mikolov models Skip-Gram and CBOW (respectively 0.75 and 0.73).
With bigger data-sets such as Word-Sim353 and Sim-Lex999 the performance of SD-W2
decreases, but they are still comparable with the results of other models trained on a
Wikipedia Corpus. In fact, for WS353, our results are in line with those of LSA, SG and
ELMo and slightly lower than those of CBOW and BERT.L4. For SimLex999, the results
of SD-W2 are similar to SG and CBOW but significantly lower than BERT and ELMo.

We tested SD-W2 also on the subsets of SimLex999 and compared the results with
those presented by Hill, Reichart, and Korhonen (2015) and with the models trained
on the BNC. In table 7, we present the results of SD-W2 compared with W2V, both
trained on Wikipedia, but also the results of the same models trained on BNC. We also
compared our model trained on BNC with LSA and W2V trained on RCV1 (similar in
size to BNC).
The performance of our model varies according to subset and training corpus: if we
consider the models trained on Wikipedia, we can compare SD-W2 only with W2V and
only for the full data-set and the Most Associated 333 pairs. In this case, the results
are very similar, especially with the full data-set. Regarding the models trained on the
smaller corpora, if we consider the models presented in Hill, Reichart, and Korhonen
(2015), we obtain high results over the whole Simlex, the Most Associated 333, and the
subset of Nouns. We performed worst over the other subsets such as Verbs and Abstract
Nouns.

5.2 Synonym Detection

Landauer and Dumais (1997) tested LSA on the Test of English as a Foreign Language
(TOEFL) for the first time. In the paper, the TOEFL test was reduced to 80 questions
(items) requiring the synonym of a given target word to be identified in a group of 4
words. The original test also provided a small clause context to the target word that
Landauer had deleted in his computational experiment. After this test, many other tests
have been used to evaluate DS models, such as the ESL (English as a Second Language)
(Turney 2001) test or the Reader’s Digest Word Power test (Jarmasz and Szpakowicz 2004).
In particular, the ESL test consists of 50 items that tend to include words with higher
frequencies than the TOEFL items. ESL items are based on a more subtle discrimination
of meaning. For the target word passage, for example, the four alternatives are hallway,
ticket, entrance, room and the solution is the word hallway.
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In this paper, we will test our model on the TOEFL and ESL tests. The results are
shown in Table 87.

Table 8
Comparison of different algorithms on TOEFL and ESL tests

Algorithm Corpus TOEFL ESL
SD-W2 BNC 0.69 0.49
COALS BNC 0.75 0.46

DVS BNC 0.73 -
W2V BNC 0.75 0.64

SD-W2 WIKI 0.76 0.54
BERT.L4 WIKI 0.89 0.60

HAL WIKI 0.50 0.31
LSA WIKI 0.61 0.54

COALS USENET 0.86 0.52
HAL USENET 0.56 0.26
LSA USENET 0.53 0.43

In these experiments, we calculated the semantic similarity between the target word
and each item’s words. We took the word with the highest similarity value as the correct
answer and then calculated the accuracy by counting the correct answers.

Considering a human average score of 64.5% for the TOEFL test, we can affirm that
SS-W2 surpassed the human rating.

5.2.1 Discussion
The semantic similarity task tackled in this section includes two classic experiments:
TOEFL and ESL. In comparing different models, the use of the same (training) corpus
would have guaranteed consistent, better aligned results (Padó and Lapata 2007). Nev-
ertheless, it would have been a major process to train a different model on BNC, so we
must rely on the accuracy values reported in other papers. Table 11 shows the accuracy
of the same DS models presented in the previous section, so we inserted only two scores
achieved by models trained on the BNC corpus. Regarding the DVS model, we only
have information on the TOEFL test because it is the only test the authors considered in
their experiment.

According to the accuracy highlighted by Padó and Lapata (2007), we know that the
PMI-IR model (Turney 2001) trained on BNC attains 61.3% accuracy, while the original
model trained on a large Web-based corpus achieves 72.5%.

As for the similarity task, we report the results of our model trained on the two
different corpora, BNC and Wikipedia. The results of our model are below expectations
both for the one trained on BNC and for the one trained on Wikipedia and for both
data-sets. If we do not consider the older models, SD-W2 obtains very low results
for the two data-sets, reaching the best precision of 0.759 on TOEFL when trained on
Wikipedia which is similar to the precision of the other model trained on a smaller

7 A complete list of TOEFL results for DS models is shown on
https://aclweb.org/aclwiki/TOEFL\_Synonym\_Questions\_(State\_of\_the\_art)
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corpus. Although our model achieves the average precision score for count models
(Baroni, Dinu, and Kruszewski 2014) on the TOEFL, we believe its precision to be too
low when compared to the output of other models like COALS.

In conclusion, the results of SD-W2 are above the average of the tested models both
for TOEFL and ESL. In Lapesa and Evert (2014) the authors claim that the parameters
affecting the accuracy of the model for the TOEFL test are the distance metric, the score
and the transformation. Cosine similarity, for example, produces better results than
other metrics, while the association measures based on significance tests achieve the
best results. Window-size might also affect model performance, the best results being
achieved with a window-size of 2. Nevertheless, Lapesa and Evert (2017) tested the best
parameters for dependency-based DSM, and the authors found that the parameters
with a strong impact are metric, score and transformation. Analyzing the results of
Lapesa and Evert (2017), we can impute the lack of precision of SD-W2 mainly to the
absence of dimension reduction.
Also Bullinaria and Levy (2007) analyses the importance of different parameters on
many semantic tasks. For the TOEFL task, for example, the models tested in the paper
obtain the best results with small window-size. Since in our model the windows size
do not correspond to a specific number of terms, we can’t really control the number
of words that belongs to the context of a given term and this can negatively affect the
precision of SD-W2. Nevertheless, the conclusions of Bullinaria and Levy (2007) contrast
with those of Lapesa and Evert (2014) regarding the dimension reduction.

5.3 Single-Word Priming

Inspired by Padó and Lapata (2007), we decided to also test the SD-W2 model on a
simulation of semantic priming. This task is addressed in other studies (Lund and
Burgess 1996; McDonald and Brew 2004) and entails the exposure of semantic simi-
larity or dissimilarity between words. According to Padó and Lapata (2007, p. 180), “if
dependency-based models indeed represent more linguistic knowledge, they should be
able to model semantic priming better than traditional word-based models”.

The experiment is based on the Hodgson (1991) single-word priming study. The
underlying principle is that the presentation of a prime word like clown could facilitate
the lexical decision on a target word like circus. Hodgson proposed an experiment in
which the human subjects must take a decision about 144 pairs of words belonging to
six different lexical relations: synonymy (trash-garbage), superordination or subordina-
tion (fuel-gas), category coordination (rectangle-circle), antonymy (enter-exit), conceptual
association (clown-circus), and phrasal association (foreign-language). The goal of the
experiment was to investigate the influence of each lexical relation on the prime effect.
The paired words were selected from different POS (Nouns, Verbs, and Adjectives) and
represented an unambiguous example of the relation type. The results of the original
experiment demonstrate that there is an equivalent priming effect for the six lexical
relations.

This experiment was used in McDonald and Brew (2004) to test the ICE (Incre-
mental Construction of Semantic Expectations) model. In Padó and Lapata (2007) the 143
original pairs (one synonymy pair was lost) were reduced by deleting pairs with at
least one low-frequency word. The authors set the Lexical Relation and prime (related,
unrelated) as independent variables. The dependent variable representing the quantity
being measured is the semantic distance between the prime and the target. The distance
between Related and Unrelated prime-target pairs simulates the priming effect. Since
the Unrelated primes were not provided in the description of the original experiment,

88



Maisto A. Extract Similarities from Syntactic Contexts

both DVS and ICE models used the averaged distance of a target to all other primes of
the same relation as unrelated primes.

In order to measure the prime effect and compare the results with the DVS model,
we performed a two-way analysis of variance (ANOVA) on the data generated by SD-
W2, COALS-BNC and W2V-BNC. Lexical Relation (six levels) and prime (two levels)
were the factors. SD-W2 showed a strong prime effect as with BNC (F(1,135) = 257.64,
MSE = 2.15, p < 0.01) as with Wackypedia (F(1,135) = 435.64, MSE = 3.52, p < 0.01). The
value of p is significant (< 0.01) and indicates a significant difference between Related
and Unrelated pairs. Also COALS-BNC (F(1,135) = 163.92, MSE = 1.02, p < 0.01) and
W2V-BNC (F(1,135) = 447.09, MSE = 10.05, p < 0.01) showed a significant prime effect.

Having determined that there are differences between Related and Unrelated prime
targets, we need to quantify the magnitude of the prime effect. Padó and Lapata
suggest using the Eta-squared (⌘2) measure, often employed to calculate the strength
of an experimental effect. The formula of Eta-squared is ⌘2 = SSeffect

SStotal
, where SSeffect

represents the variance (sum of square) created by one particular effect (the prime) and
SStotal is the sum of the variance of all observations. It represents how the variability
in the distance variable can be explained by priming (Related-Unrelated). DVS reports
an eta2 of 0.332. This means that DVS accounts for 33.2% of the variance. The eta2 of
SD-W2 trained on BNC is 0.477, while trained on Wackypedia is 0.566. COALS obtains
0.383. The eta2 obtained by W2V-BNC is 0.613.

In order to verify the prime effect over all six relations, we produced different
ANOVAs for each Lexical Relation. Table 9 reports the mean distance values for each
relation in the Related and Unrelated condition. It also indicates the prime effect size for
each relation for SD-W2, COALS-BNC, and DVS, calculated as Related-Unrelated.

Table 9
Mean distance values for the six Lexical Relations; Prime Effect size for SD-W2, COALS, DVS
and W2V

Lexical Relation Related Unrelated SD-W2 BNC Effect SD-W2 WIKI Effect COALS Effect DVS Effect W2V Effect
Synonymy 0.374391 0.141128 0.233262 0.294304 0.163129 0.165 0.514

Superordination 0.327209 0.126888 0.200321 0.287032 0.111652 0.106 0.386
Category coordination 0.340998 0.142409 0.198589 0.302349 0.124305 0.137 0.336

Antonymy 0.291833 0.142169 0.149664 0.197816 0.126387 0.165 0.409
Conceptual association 0.291064 0.122289 0.168775 0.172834 0.114011 0.083 0.404

Phrasal association 0.253054 0.125435 0.127619 0.132093 0.102564 0.043 0.282

5.3.1 Discussion
According to Padó and Lapata, the semantic priming must be modeled better by means
of a model that can represent more linguistic knowledge. With this experiment, we point
out that SD-W2 can show a reliable prime effect on the Hodgson experiment, surpassing
the results of the other models tested on the same data set and trained with the same
corpus. The significantly better results reached by Word2Vec reflect the advances of the
DS models in the last years. The use of Neural Networks helps to produce better results
although the corpus used was the same than other models.

Analyzing each Lexical Relation result presented in table 9, we observe a reliable
prime effect on the six types for SD-W2. In particular, the model shows the best results
with Synonymy and Superordination-subordination pairs (almost double the value ob-
tained by COALS and DVS). Phrasal association, Conceptual association, and Category
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coordination obtain decent results compared with the DVS model but similar to COALS.
As for Antonymy, SD-W2 shows the worst prime effect.

Analyzing the similarity generated by single pairs, we notice that the Antonymy
relation shows no critical issues but the closest Related-Unrelated values. In phrasal
pairs, on the other hand, there is a general greater deviation between Related and
Unrelated similarities, although in three cases the Unrelated value is higher than the
Related one (help-wanted, mountain-range, and pony-express). While two of these values
are very close, the value of the pair pony-express is considerably lower than the average
distances of all the other primes. The low value obtained by Phrasal association pairs
can be attributed to the nature of this association. In effect, it depends on in-praesentia
relations and is strongly influenced by the co-occurrence of the two pair words in the
corpus. For example, the words pony and express have high frequencies in BNC, but the
sequence pony express only appears twice. Contrariwise, in Wikipedia, there are many
pages in which the two words appears in association (movies, tv shows,sports and other
categories).

5.4 Operator-Argument selection

In section 2 we stated that, according to Harris’s distributional hypothesis, the context
selection of DS models must include not the graphical context of a target word but
its syntactic context since, according to Harris’s theory, the distribution of a word
must be associated with the relation between Operators and Arguments. This kind of
relationship is a syntactic relationship and can be brought out by a dependency tree.
This is why the SD-W2 model relies on syntactical dependency and selects all the words
included within a syntactic distance range as contexts of the target word.
In order to test the ability of our model to detect Operator-Argument relations, we set
up a new experiment in which the model must connect a class of nouns with the verb
form that selects this class as a right or left argument. For the vast majority of verbs,
subject or object selection includes very generic classes of nouns. The verb to sleep, for
example, selects animate entities (the dog, the child, John, etc.) as likely subjects, like many
other verbs. A transitive verb such as to listen presents a similar distribution to sleep for
the subject and a huge selection of nouns as the object.

For the Operator-Argument selection test, we needed a set of verbs whose distribution
must be restrictive. A verb like to smoke, for example, includes the very restricted class
of “smokable items” as the object. The word cigarette can be selected as the argument in
a wide range of verbs with variable likelihood. Whereas, if we consider the information
that the Operator and the Argument mutually exchange, we must find a stronger
similarity between the noun and the verb to smoke. Following this hypothesis, we built
a data set of verbs with restricted arguments.

This data set is based on the syntactic classes of verbs collected by the Lexicon-
Grammar Theory (LG). LG, which is deeply connected to the Operators-Arguments
theory, determines the structure of a large number of verbs (Gross 1975) that were
classified on the basis of their shared syntactic features. Since there are only specific LG
tables of English verbs (mainly phrasal verbs), we relied on the Italian classification (Elia
1984; Vietri 2004) from which we selected two classes of verbs with restricted arguments:
class 2B and class 20R.

Thanks to this classification, we were able to extract, for example, all the intransitive
verbs with one restricted argument (to bark, to derail, to erupt, etc.) from class 2B, or
transitive verbs with restricted objects (to smoke, to drink, to celebrate) from class 20R.
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Class 20R includes 77 verbal uses characterized by a syntactic structure of the kind
N0V N1restricted. The verbs of class 20R present only one complement (direct object)
which is strongly restricted to one or a specific class of objects. We select 25 verbs
from this class which present a very restricted selection and are not ambiguous or used
metaphorically.
Class 2B includes 45 intransitive verbs with a structure N0restrictedV . As for class 20R,
the subjects present a selection of nouns restricted to one specific class. Likewise in this
class, many verbs used metaphorically have been discarded.

Hence, 70 Italian verbs were selected. These verbs were then translated and the 68
which keep the same properties in both languages were selected. From the list of 68
English verbs, we selected a restricted group by deleting verbs that feature a restricted
argument only in one interpretation (to quote, to cultivate), with very low frequencies (to
erupt, to engrave, to rebind), and with a metaphorical use (to roar, to shine)

The final list included 26 verbs that were used to generate sets of 4 nouns, which
can figure as the restricted subject or the restricted object of these verbs. The groups
include nouns that must represent both prototypes of the class of nouns required by
the verb and more peripheral nouns, with the least possible ambiguity. The nouns of
one group may occasionally appear again in another group.

We decided to include some verbs with a very similar distribution, such as cook and
fry, and test the models with subtler differences.

The problem of choosing a group of nouns that work as the subjects or objects of
a given verb primarily applies to verbs with similar meanings. When we selected the
group of nouns for the verb to wear, we freely selected nouns from the list of clothes. In
fact, clothes represent the restricted distribution of objects for to wear. However, using
a frequency criterion for representativeness, we look for the most representative and
distinctive objects among the nouns of clothes (shirt, hat, jeans and shoes).

On the other hand, when choosing the nouns for fry or cook, which both select
the same class of nouns (edible items or foods), we attempted to choose nouns that
emphasise the variations between the two distributions. For to fry we selected potatoes,
chips, eggs or bacon. Since fry can be considered as a subclass of cook, the latter can also
select all those elements, but with less probability than bean, pasta, rice and bread.

The groups of nouns were submitted to 40 human subjects to test their capacity to
connect the arguments with the correct verb. The subjects were Italian undergraduates
and master’s degree or PhD students with good linguistic skills. They were asked to
read the list of verbs and, for each group of nouns, choose a verb that can select all four
nouns in the group as subject or object.

We calculate the precision as the number of correct answers (verbs correctly associ-
ated with the list of nouns they select) divided by the total number of questions (26).
The human subjects had issues with classes that can select very similar items such as
cook and fry or smell, or hunt, growl, and bark, but in general, the average human precision
is 0.923. This result validated the proposed group of nouns related to each verb: while
most human subjects correctly associated nouns and verbs, some of them reported a
precision range of 0.85 to 0.90. Only one subject scored 0.77. The fact that the human
subjects confused cook with smell, which includes the nouns flower and perfume, or hunt
with bark, which includes the noun puppy, indicates that many errors can be attributed
to a cursory reading of the data.
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Table 10 shows the selected verbs and the group of nouns.

Table 10
Data set for the Operator-Argument Selection Test

Verbs Groups of selected nouns
fly plane, robin, bird, helicopter

cook bean, pasta, rice, bread
fry potato, chips, egg, bacon

harvest cereals, wheat, corn, grain
blossom rose, violet, lily, daisy

growl dog, monster, wolf, hound
gallop rider, horse, pony, deer
asphalt street, ground, square, road

boil soup, water, milk, bean
hunt fox, deer, elephant, bird
wear shirt, hat, jeans, shoes

celebrate marriage, wedding, festival, christmas
smoke cigarette, cigar, tobacco, weed
drink water, milk, whisky, juice
prune pine, tree, oak, branch

prescribe drug, medicine, pill, treatment
print newspaper, book, picture, photo
drive car, bus, train, truck
shear hair, sheep, fur, goat
smell garlic, cheese, flower, perfume
play football, role, tennis, guitar
sing song, carol, prayer, hymn
run championship, race, marathon, tender

abort baby, male, children, pregnancy
bark dog, puppy, wolf, hound

bellow bull, cow, elephant, ox

We tested the SD-W2 model with this data set by computing the best candidate
verb for a group of nouns as the one with the highest average semantic distance from
every noun. The precision of the SD-W2 model was 0.73 while COALS obtained 0.57.
Word2Vec reaches a precision of 0.808.

Table 11
Comparison of different algorithms on Verb Selection Test

Algorithm Corpus Precision
SD-W2 BNC 0.73
COALS BNC 0.57

W2V BNC 0.81
SD-W2 WIKI 0.61
W2V WIKI+GIGAWORD 0.65
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As shown in table 11, we also tested SD-W2 model trained on Wackypedia and the
GLOVE Word2Vec pre-trained model (6 billion of words from Wikipedia and Gigaword
English Corpus) with 200 dimensions. Interestingly, those two versions, trained on
larger corpora, obtain the worst results, underlining that the precision of the model,
for this task, is not influenced by the corpus dimension, but by its content.

5.4.1 Discussion
With this experiment, we aimed to test the SD-W2 model’s ability to detect the con-
nection between a verb and the class of noun it selects as an argument. As for the
Semantic Priming experiment, we think that dependency models must model this kind
of relationship better because they explore the syntactic connection between words.
Our experiment reveals two critical weaknesses: first, we compare our model only with
COALS and Word2Vec; second, the data set is still incomplete and needs to be improved
and tested by more human subjects.

In actual fact, we can only study the results of the SD-W2 model by exploring the
critical issues we identified. The best model configuration (BNC) fails in the classifica-
tion of seven groups: it confuses fry with cook, asphalt with drive, prune with bark, shear
with wear, abort with fly, bark with growl and bellow with fly.

The model which reaches the best results was Word2Vec, which share some errors
with SD-W2 (prune,shear,abort and bellow) but also confuses run with gallop.

In some cases, we expected the model to make the error, such as in the case of to
bark and to growl which have a very similar meaning and select a similar group of items.
The same goes for to cook and to fry.

As for to prune and to bark, we must attribute the error to the ambiguity of bark,
which can also mean the tough protective outer sheath of a tree trunk. Since we train the
model on a lemmatized corpus, we must use the dictionary form of the verbs, and we
cannot disambiguate the meaning by using, for example, the past tense. This hypothesis
is also confirmed by the error of Word2Vec.

The case of to asphalt and to drive is also clear, because for the latter verb what
interferes may be a locative complement. In fact, drive has a higher similarity with road
or street, much more than the similarity between the two words and asphalt.

With the verbs abort and bellow, the model confuses them with fly. In the first case,
the word abort in BNC seems to be connected with the domain of computer science (as
in he terminates/aborts the program/process) and it manifests a weak semantic association
with all the words in the group. On the other hand, fly has higher similarity values
with baby and male which are also related to the sphere of zoology. The word male, for
example, has a strong association with the word bird.

The word bellow obtains similarity values with the four words in the group compa-
rable to the ones obtained by fly, but the latter has a higher value with all the words. We
observe the same behaviours in Word2Vec results for the two group of words.

In order to visualize the neighborhood of a verb like to fly or to shear, we developed
a network composed of three levels of the verb’s neighbors: we extracted the verb’s 50
nearest objects (first-level objects) and their similarity scores, and performed a 10-object
extraction (second-level objects) for each of the 50 first-level objects. We then replicated
the same process for the second-level objects (third-level objects).

We generated a network in which the nodes are words and the weighted edges
are similarity scores. We used Gephi (Bastian, Heymann, and Jacomy 2009) to build up
the visualization and performed two specific graph algorithms. First, we calculated the
degree of each node to point out words that frequently appear as the verb’s nearest
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neighbors; second, we ran the Modularity Class algorithm to calculate sub-communities
of nodes and easily identify specific classes of words. Modularity Class (Blondel et
al. 2008; Lambiotte, Delvenne, and Barahona 2008) was applied to the network with
a resolution parameter of 2 to minimize the number of generated classes.

An example of the network is reported in figure 2, which shows two-word net-
works: the upper figure represents the neighborhood of the word shear (the yellow
node). As can be seen, the words that emerge are all related to the domain of physics.
The noun shear represents “a movement in the plates in the surface of the earth that
causes them to change shape or break” and the verb to shear also refers to a deformation
of a material substance in which parallel internal surfaces slide past one another.

The figure below refers to the word fly and shows the relation of the verb with its
possible subjects. The Modularity Class identifies a class of animals (red nodes) in which
the word bird stands out, but also a class of vehicles (green nodes), places (blue nodes),
and motion verbs (black nodes).

The differences between a verb associated with the correct group of nouns (fly)
and a verb where the system produces an error (shear) emerge clearly in this kind
of visualization. In fact, in the network of shear, there is no sign of the nouns in the
corresponding group. This is confirmed by figure 3 which contains the network of the
word celebrate.

Among the neighbors of celebrate we find a group of words related to the temporal
dimension (weekend, day, evening), music or arts in general (concert, exhibition), and
events (ceremony, festival, protest).
This indicates that, in some cases, the problem may lie in the corpus where a specific
meaning of a word is privileged and not in the model.

In general, SD-W2 obtained good results, compared to COALS-BNC. An analysis of
the errors of our model points out that the words in the group associated with to bark and
the words in the group associated with to fry belong to the same category of respectively
Animals and Food, which are also selected by to cook and to growl. Even if a human
subject can detect differences between these groups, we can consider this model’s errors
as minor. If these two groups of words are excluded from the data set or if the two
automatic evaluations are considered exact, SD-W2 exceeds 80% accuracy, surpassing
the score obtained by some of the human subjects who took part in the experiment.

6. Conclusion

In this paper, we have presented a new model for Distributional Semantics. The model,
called SD-W2, uses syntactic distances extracted from a parsed text to build a word’s
context. From the distributional hypothesis analysis conducted, we argue that the con-
text of which Harris speaks is syntactic because every analysis of the meaning must
be based on the Operator-Argument relation. To base our distributional analysis on the
syntactic dependencies between words, we use a model that propagates the influence
of a target word on its related words at a specific syntactic distance. In order to calculate
this influence, we tested a linear method in which each word directly connected with
the target obtains a higher value, and this value is decreased by 1 for more distant
words. We also tested a different methodology in which we calculated the weight of
the influence of the target word over the other words as a function of the percentage of
the sum of its degrees divided by the distance.

Since we obtained the best results with the second methodology, we tested the
model with the latter weight function in three experiments used by many other authors.
The first family of experiments concerns semantic similarity. The model must replicate
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(a) Shear

(b) Fly

Figure 2
Gephi network for two words (shear and fly); different colours correspond to different classes.
Text size depends on the node degree.
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Figure 3
The network of celebrate

human judgment on the similarity between pairs of words. The performance of SD-W2
in this experiment exceeds the average of compared models and some cases are above
the performance of the predict or contextualized models.

The second family of experiments deals with synonymy and is based on synonymy
tests for foreigners. In this case, the results of SD-W2 are above the average of compared
models. This result can be imputed to the lack of matrix dimensionality reduction,
which is a parameter of crucial importance in this class of experiments. In the future, we
plan to add an SVD reduction algorithm to the SD-W2 model to verify this assumption.

The third experiment regards single-word priming. The test is modeled over the
Hodgson experiment (Hodgson 1991) and calculates the model’s ability to simulate the
prime effect on six different kinds of lexical relations. The results of SD-W2 are very
encouraging for this task, surpassing those obtained for the compared models, except
for Word2Vec which trained on BNC and obtained the best performance.

Finally, we subjected the model to a new experimental test regarding the operators’
argument selection. Given a set of groups of four nouns belonging to a specific semantic
class, the model must calculate the verb that selects the words of each group as an
argument. The model reached a good accuracy score (73%) with errors that, in many
cases, are due to the verb’s ambiguity. Testing two models (SD-W2 and W2V) trained
on different larger corpora, we realized that this parameter is not relevant to the task.
The BNC corpus obtained the best results despite its reduced dimension. In the future
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we plan to enlarge the experiment and test our model trained on different corpora in
order to define the parameters that achieve the best results for the task.

We demonstrate that a dependency model could achieve good results without a
large and expensive pre-processing phase. Comparing our model with a similar word-
window model like COALS, trained on BNC, we demonstrate that SD-W2 can sur-
pass COALS in almost all the selected tasks and with a comparable amount of pre-
processing. Consequently, we demonstrate that growth in corpus size results in the
exponential improvement in our model’s performance. Training the model on a large
corpus such as Wackypedia, its performance reaches the performance levels of DL-
Based models in some cases.
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