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Large Language Models for Detecting Bias in

Job Descriptions

Tristan Everitt⇤
Dublin City University

Paul Ryan⇤⇤

Dublin City University

Brian Davis†
ADAPT Research Centre

Kolawole J. Adebayo‡

ADAPT Research Centre

This study explores the application of large language (LLM) models for detecting implicit bias
in job descriptions, an important concern in human resources that shapes applicant pools and
influences employer perception. We compare different LLM architectures—encoder, encoder-
decoder, and decoder models—focusing on seven specific bias types. The research questions
address the capability of foundation LLMs to detect implicit bias and the effectiveness of domain
adaptation via fine-tuning versus prompt-tuning. Results indicate that fine-tuned models are
more effective in detecting biases, with Flan-T5-XL emerging as the top performer, surpassing
the zero-shot prompting of GPT-4o model. A labelled dataset consisting of verified gold-standard,
silver-standard, and unverified bronze-standard data was created for this purpose and open-
sourced1 to advance the field and serve as a valuable resource for future research.

1. Introduction

Organisations strive to promote diversity and inclusivity, driven by the benefits to
company culture, stereotype reduction, and compliance with legal standards. An in-
dustry report revealed a statistically significant correlation between diversity metrics
and financial performance. Specifically, the findings indicated that organisations rank-
ing highest in cultural diversity and gender diversity were 35% and 15% more likely,
respectively, to surpass median financial returns (Hunt, Layton, and Prince 2015).
In human resources, bias affects both employers and employees in explicit and implicit
forms (Fridell 2017). Explicit bias is conscious and controllable, but can be illegal in
employment contexts. Implicit bias is subtle, unconscious, and harder to address (Fiske
and Lee 2008; Cunningham and Cunningham 2022; Storm et al. 2023). Implicit bias
in job descriptions is a major concern as it shapes the applicant pool and influences
applicants’ decisions. Bias in the language of job descriptions can affect how attractive a
role appears to different individuals and can impact employer perception. The challenge
is to efficiently identify and mitigate these biases.
The application of large language models (LLMs) for detecting bias in job descriptions
is a promising yet underexplored area. This study investigates the effectiveness of LLM
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‡ ADAPT Research Centre, Dublin, Ireland. E-mail: kolawole.adebayo@adaptcentre.ie
1 Dataset Repository: https://huggingface.co/2024-mcm-everitt-ryan
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architectures2 with fewer than 10 billion parameters in detecting implicit bias. The
chosen model sizes and architectures were selected to investigate how different designs
perform given the resource constraints.
A comprehensive evaluation is conducted on the models’ performance across diverse
in-context learning scenarios (Brown et al. 2020; Wang et al. 2023; Wei et al. 2022), focus-
ing on their adaptability and generalisability in various settings. Specifically, we assess
the models’ performance both with and without fine-tuning for domain adaptation,
providing insights into their ability to identify implicit bias.
We conceptualise the task of identifying implicit bias in job descriptions as a multi-label
classification problem, where each job description is assigned a subset of labels from a
set of eight categories—age, disability, feminine, masculine, general exclusionary, racial,
sexuality, and neutral. This study investigates two primary research questions:

1. Can foundation LLMs accurately detect implicit bias in job descriptions without specific
task training? We evaluate the performance of three topical decoder-only models
under four distinct prompt settings, assessing their ability to extract relevant
information from job descriptions and identify implicit bias.

2. Does domain adaptation via fine-tuning foundational LLMs outperform prompt tuning
for detecting implicit bias in job descriptions? We fine-tune models with varying ar-
chitectures as text classifiers on task-specific data and compare their performance
to that of prompt-tuned models.

Central to the research is the creation of a labelled job descriptions dataset. We em-
ployed the services of two graduate students knowledgeable on the task to work on
the annotation process. The manual annotation of real job descriptions, which took 76
hours, was undertaken to produce a subset of gold-standard manually verified genuine
labelled data. Synthetic data was generated using large-scale language models. A subset
of the synthetic data was manually annotated over 92 hours to produce silver-standard,
manually verified labelled data, which was then used to augment minority classes. The
remainder of the synthetically generated data constitutes bronze-standard unverified
labelled data.

The paper is presented as follows. Section 2 contains a brief review of related
literature. Sections 3 and 4 detail the dataset and experimental methodology. Section 5
describes how we conducted the research experiments. Section 6 presents our results
and an analysis of the outcomes. We conclude the research in Section 7.

2. Related Work

In the domain of job descriptions, the use of phrases and their context can impact an
applicant’s perception of the employer and make them more or less attractive to certain
individuals. Gender-biased language in job descriptions, for instance, has been studied
for its impact on the number of women applying for leadership positions (Horvath and
Sczesny 2016). Another study examined the effect of gender-specific wording and its
role in sustaining gender disparities in typically male-dominated occupations (Gaucher,
Friesen, and Kay 2011). Research has shown that age-specific wording in job descrip-
tions significantly attracts younger applicants (Burn et al. 2022). The wording within
job descriptions not only shapes perceptions around specific biases such as gender and

2 Encoder, encoder-decoder, and decoder architectures.
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age but can also attract individuals with communal narcissistic tendencies, highlighting
how job description wording can resonate with individuals (Fatfouta 2023).

A simple method to identify bias is lexicon or keyword matching, which identifies
specific words, word stems, or phrases predetermined to be associated with biased
language. Regular Expressions have been discovered to remain a potent tool for identi-
fying illegal age discrimination in Dutch job descriptions, given the predictability of
age-coded words (Pillar, Poelmans, and Larson 2022). However, the basic find-and-
replace approach does not scale well as individual words can carry several meanings
depending on context, thereby requiring the use of Natural Language Processing (NLP)
techniques. A study employed part-of-speech tags, lemmas, relative word position,
and linguistic lexicons for subjectivity and modality for detecting biased language
in Wikipedia articles (Recasens, Danescu-Niculescu-Mizil, and Jurafsky 2013). Two
principal types of bias within Wikipedia are identified: epistemological bias, which
manifests subtly through linguistic subtleties, and framing bias, which is explicit and
conveyed through subjective language. Similarly, another study used part-of-speech
tags, sentiment analysis, and the identification of verbs often associated with biased
expressions to identify biased language in Wikipedia articles (Hube and Fetahu 2018).
The study used “seed” words to identify potential biased statements and, with word
embedding models, created a lexicon of words that frequently indicate bias in articles.
Furthermore, a study employed part-of-speech tags and sentiment analysis, alongside
named entity types and token characteristics, as well as word embeddings, to develop
textual features (Frissen, Adebayo, and Nanda 2023).

The advent of large pre-trained language models has revolutionised the field of nat-
ural language processing (NLP), offering new avenues for improving the performance
of existing methodologies (Devlin et al. 2019; Radford et al. 2019). A key question that
arises is whether the context-aware capabilities of these models can surpass traditional
NLP techniques in detecting subtle biases in job descriptions. Furthermore, innovative
prompting strategies, such as chain-of-thought prompting, have shown promise in im-
proving performance on tasks that require reasoning (Wei et al. 2022). Recent studies
have shown that sufficiently large large language models can perform well on multiple
tasks without requiring task-specific training (Radford et al. 2019). Additionally, few-
shot settings have proven effective for in-context learning, enabling models to improve
on a task when provided with relevant examples (Brown et al. 2020).

Several studies have explored the potential of large language models for various
NLP tasks. For instance, a study on GPT-3, a 175B-parameter model, evaluated its
performance under few-shot settings and demonstrated its ability to learn from task-
specific exemplars within the prompt (Brown et al. 2020). Another study investigated
the use of ChatGPT for data annotation and found that it can outperform human
annotators in terms of accuracy, while also reducing time and financial costs (Gilardi,
Alizadeh, and Kubli 2023). These findings are particularly relevant to our study, as they
establish the effectiveness of in-context learning for text classification.

Despite these advances, the question remains whether LLMs can effectively detect
implicit bias in job descriptions. Our study aims to address this research gap by inves-
tigating the ability of LLMs to identify such subtle biases, and explore the effectiveness
of different prompting strategies and domain adaptation techniques for improving their
performance. By leveraging the context-aware capabilities of LLMs, we seek to develop
a more accurate and efficient approach to detecting implicit bias in job descriptions.

A comprehensive review of the literature reveals that the use of large language
models for detecting bias in job descriptions is a relatively unexplored area of research.
To date, only one study has investigated the application of large language models for
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this purpose, focusing specifically on age and gender-related biases in Australian job
descriptions (Mao, Tan, and Moieni 2023). However, this study has several limitations
that our research aims to address. Firstly, the study did not include encoder-decoder
architectures, which have been shown to be effective in various NLP tasks. Secondly, the
study uses a decoder model, GPT-2 (Radford et al. 2019), that has since been surpassed
in terms of performance by more recent models. Finally, it does not investigate the
impact of different prompting strategies on the detection of bias in job descriptions.

Our study seeks to fill these gaps in the literature by making several key contribu-
tions. Firstly, we include a diverse sample of job descriptions from multiple countries,
allowing us to examine the generalisability of our findings across different cultural and
linguistic contexts. Secondly, we address a broader range of biases, including racial, sex-
uality, and disability-related biases, in addition to age and gender-related biases often
tackled in prior works. Finally, we incorporate encoder-decoder architectures and recent
state-of-the-art decoder models in place of GPT-2, thereby enabling us to investigate the
impact of architecture and model sizes in addition to prompting methods. This results
in a comprehensive understanding of the promises and limitations of applying LLMs
for bias detection and fostering inclusive hiring in the job market space.

3. Dataset

A requirement of this study is to undertake a multi-label classification task to identify
seven distinct types of bias, as well as a neutral label. However, since we are unaware of
any existing dataset that includes labelled data for this specific purpose, it is necessary
to create a new dataset tailored to the needs of this study. Moreover, given that bias
can manifest differently across various cultures and legal frameworks, it is important
to include job descriptions from a wide range of countries. This section outlines the
procedures undertaken to create the dataset.

3.1 Data Gathering, Cleaning, & Preprocessing

We utilised a public job descriptions dataset (Techmap.io 2020–2023), which avoided
web scraping across various international websites (Appendix C-A1). The dataset con-
sisted of job descriptions from Ireland (October 2020, 2021, 2022), approximately 3.4
million global samples from September 2021, and 33,000 USA postings from May 2023.

The dataset required extensive preprocessing to extract the necessary information.
We performed the following steps:

1. Data Extraction. Relevant details such as country, position name, and raw HTML
were extracted from the dataset.

2. Remove Duplicates and Language Detection. Removing duplicates reduced the
dataset from 3.4 to about 2.6 million samples from 83 countries. The United States
constituted nearly a third of the samples3. Language detection (Stahl 2023) resulted in 56
languages within the dataset, with English at 69.1%, German at 15.8%, and Russian at
10.6%. As the focus of the study is on English bias and non-inclusive language, non-
English samples were discarded, further reducing the dataset to about 1.76 million
samples.

3 USA 31.4%; DEU 16.2%; GBR 15.5%; RUS 6.1%; AUS 5.8%
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3. HTML Preprocessing. We removed broken links and invalid HTML tags that inter-
fered with an HTML-to-Text parser (Hedley 2023) for text extraction 4. We also removed
excess white spaces, added missing full-stops, and corrected punctuation spacing where
applicable.

4. Text Cleaning and Filtering. We used regular expressions (Appendix D) to address
problematic phrases that remained after the initial cleaning process. This step resolved
issues with extra white spaces, punctuation spacing, duplicated special characters e.g.,
having †††† instead of †, emojis, accents, and diacritical marks. This ensures that we
obtain well formatted sentences and remove noises that do not contribute to the context.

5. Potential Bias Filtering. To reduce the dataset further, we used a list (Ap-
pendix C-A4) of 641 biased terms aggregated from previous studies (Gaucher, Friesen,
and Kay 2011; Burn et al. 2022; OFCCP 2024; Bruce 2009; Ongig Team 2024; Gill 2020;
Frissen, Adebayo, and Nanda 2023). We selected only samples containing one or more
of these terms and discarded the rest. We divided the samples into sections (phrases)
of up to 400 words, rounded to the nearest complete sentence and only retained those
containing between 3 and 400 words; a character count between 10 and 3000; and having
not more than 20 phrases per sample. This process cleaned out about 4% of the original
samples.

6. Deduplication. Due to multiple listings on various platforms, updates, revisions, and
agency postings, duplicate and near-duplicate samples are inevitable. An embedding-
based approach (Douze et al. 2024; Reimers and Gurevych 2019) identified and removed
semantically similar texts by creating an embedding vector for each sample and calcu-
lating the squared Euclidean (L2) distance between vectors. This distance, calculated by
summing squared vector values, ranges from zero (identical vectors) to infinity (most
different). Samples with a distance less than 0.3 were considered duplicates, retaining
one copy and discarding the rest.

3.2 Dataset Statistics

The top ten countries are shown in Table 1. A total of 19 million potentially biased terms
were identified across the samples, with a breakdown by category shown in Figure 1.
Therefore, the samples at this stage are considered potentially biased, as they contain at
least one of the 641 biased terms.

3.3 Data Labelling, Anonymisation, Augmentation

After cleaning the dataset and reducing it to potentially biased phrases, the data needs
to be labelled, as it is currently unsuitable for training.

Data Labelling The main challenges of labelling the dataset are:

1. Bias and non-inclusive language can often be subtle and require domain knowl-
edge to accurately identify their various forms.

4 Example: &lt;li&gt; instead of <li>; or /xe2/x80/x99 instead of a right single quotation mark.
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Figure 1

Potential Bias Terms (in Millions)

Table 1

Country Distribution of Samples

Country Count Percentage

United States 643,648 38.0%
United Kingdom 594,561 35.11%
Australia 128,427 7.58%
Ireland 102,314 6.04%
Canada 34,297 2.03%
New Zealand 31,846 1.88%
Singapore 19,635 1.16%
India 19,584 1.16%
Germany 19,035 1.12%
Hong Kong 13,938 0.82%

2. Annotating 2.5 million phrases across 1.69 million samples is a massive task given
our resources.

3. Human labelling can be slow, error-prone, and may introduce the annotator’s own
unconscious bias.

To address the first challenge, we reviewed the 641 biased terms to improve
our understanding of identifying bias. We added 34 new terms and rationales (Ap-
pendix C-A4) explaining why these terms can be considered biased. For the 641 existing
terms, GPT-4 Turbo (OpenAI 2023) provided provisional rationales, which we then
sampled a small number and refined manually. This process served two purposes:

1. Manually verifying synthetic rationales and cross-checking them against existing
literature increased domain knowledge (Gaucher, Friesen, and Kay 2011; Burn et
al. 2022; OFCCP 2024; Bruce 2009; Ongig Team 2024; Gill 2020; Frissen, Adebayo,
and Nanda 2023).

2. Allowed us to collect short biased phrases that would later be used to synthesise
biased samples.
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Figure 2

Annotated Samples: Bias vs Neutral

To mitigate the second challenge of labelling the dataset, a small random subset of
the 2.5 million phrases was manually annotated. To avoid excluding other countries due
to the high representation of the US and the UK, a two-round sampling was conducted
instead of random sampling. The first round balanced the dataset by country, and the
second ensured balanced representation of bias categories by focusing on the number
of bias terms.

The third challenge of labelling data cannot be entirely overcome, but best efforts
were made to mitigate it. Samples were annotated by presenting them along with
details of the country, job role, detected biased terms, and their provisional/verified
rationales (Tkachenko et al. 2020-2022).

After manually reviewing 787 real samples, the bias categories remained skewed.
Age bias was most prevalent with 161 samples, while feminine bias was the least com-
mon with 31 samples. Options considered included further manual labelling and train-
ing a classifier to identify additional samples. However, minority class classification
remained suboptimal. To address the class imbalance, the chosen approach involved
synthetic oversampling along with manual verification, which will be discussed in
more detail in Section 3.3 under Data Augmentation. Manually verified samples, both
real and synthetic, illustrating the comparison between biased and neutral samples are
presented in Figure 2 and the distribution of bias across categories is shown in Figure 3.

Data Anonymisation To prevent personally identifiable information (PII) from leaking
into model training, we implemented a data anonymisation process. Initially, regular
expressions were used, but they failed to catch all details. We then exported the dataset
to a human-readable format and used version control to track changes. GPT-4o was
used to replace PII with placeholders such as [Name Redacted] and [Email Redacted].
To save costs and improve speed, the system returned <SKIP> if no PII was found,
avoiding unnecessary text generations. An iterative review ensured the process had not
inadvertently altered non-PII text. Any errors were reverted. Finally, random sampling
was performed to verify that the automated cleaning process had not missed any PII.

Data Augmentation In this study, GPT-4o and Meta Llama3 70B (OpenAI 2024;
AI@Meta 2024) were utilised to generate 3,480 synthetic samples. Of these, 1,829 were
version controlled, manually verified, and augmented to achieve a better balance among
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Figure 3

Annotated Samples by Bias Category

the classes. The remaining 1,651 unverified samples were used solely to supplement
the training data. Therefore, it was crucial to generate high-quality samples to avoid
introducing artefacts or creating instances that overlap with the majority classes. Three
sequential iterations of data augmentation were conducted, with each attempt adjusted
based on findings from the previous iteration. However, only the final iteration con-
tributed to the dataset, as the first two were unsatisfactory attempts.

Iteration 1 introduced specific biases into the samples by prompting the model to
demonstrate biased language within a particular category. However, it led to unrealistic
outputs with excessive exclusionary language and multiple unintended biases instead
of the targeted bias. Additionally, recurring themes such as family-oriented narratives
and binary gender norms dominated some categories, thus limiting variety.

Iteration 2 of data generation involved refining prompts by incorporating the 675
verified/provisional rationales from Section 3.3 (See Appendix E-A for prompts). This
approach guided the model on how to include specific biased terms within its output.
However, this approach had several unintended consequences. The use of rationales
to inject biases into the samples resulted in a skewed dataset, with a disproportionate
number of samples falling into categories with the most terms. This led to repeated
themes similar to those observed in the first iteration, and generated overly biased
samples that failed to generalise. One notable issue that arose from this approach was
the misclassification of certain phrases. For example, a classifier would categorise any
mention of language in a sample as racially biased, even if it was not inherently so.
This issue was traced to the term native, which the rationale suggested might be non-
inclusive due to its implication of preference for certain individuals. As a result of
this issue, phrases such as Native English Speaker were included in samples, but the
classifier focused on the language aspect rather than the exclusionary nature. This
caused phrases such as Proficient in English to be misclassified as racially biased. This
highlights the importance of considering the context and nuances of language when
generating biased samples. Furthermore, the samples generated with the rationales
were mainly exclusionary, lacking neutral examples for contrast. This limited the ability
of the classifier to learn from the data and make accurate predictions. These findings
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underscore the need for careful consideration of the data generation process and the
importance of including neutral examples in the dataset.

Iteration 3 of data generation, we built upon the second iteration by introducing tri-
chotomy of phrases per bias category: negative, neutral, and positive. This approach
allowed us to capture a more nuanced representation of implicit bias in job descriptions.r negative: Phrases that were discriminatory, exclusionary, or subtly favoured cer-

tain groups over others. For example, “He should be adept at problem-solving.”
(gender-coded language).r neutral: Phrases that were unbiased, equitable, and did not favour any particular
group. For example, “The ideal candidate should have excellent problem-solving
skills”.r positive: Phrases that, due to tokenism or misguided good intentions, may unin-
tentionally introduce bias and deter applicants who feel excluded. For example,
“We are focused on hiring . . . to enhance our team diversity.”.

An exception to the trichotomy were masculine and general biases which consisted of
a dichotomy of negative and neutral. We did not observe positive discrimination or to-
kenism towards masculinity in real data, and therefore excluded it from the trichotomy.

A total of 2,136 phrases (Appendix C-A5) were developed across seven bias cate-
gories and their groupings (negative, neutral, positive). These phrases included exam-
ples from real samples, synthetic variations of those examples, and purely synthetic
creations. After manual review and adjustment, these phrases were used to generate
full synthetic samples targeting a particular implicit bias or no bias at all.

After revising the data generation process, we reviewed a new set of samples to
assess their quality and suitability for training data. Our evaluation revealed that the
revised samples addressed previous concerns, exhibiting more subtle bias without over-
lapping majority classes. Only a few samples required adjustments, which increased
our confidence that the unverified samples would be suitable for the training data.
This suggests that the revised data generation process was effective in producing high-
quality samples that accurately represent implicit bias in job descriptions. However,
we noted an issue when generating samples using the GPT-4 model (OpenAI 2024),
where artefacts were occasionally introduced by the removal of offensive terms, such
as homosexual, despite the intention to include them. This problem was more common
with GPT-4, but occurred inconsistently in both GPT-4 and Llama3 models, likely due
to the models’ intentions to avoid offensive content (Rebedea et al. 2023). Interestingly,
we found that when the models explained why content was deemed offensive or
biased, they became more lenient, retaining the offensive material. This suggests that
providing models with the opportunity to justify their decisions can help to mitigate
the introduction of artefacts and improve the overall quality of the generated samples.
Our findings have implications for the development of AI models that aim to detect
and mitigate implicit bias in job descriptions and highlight the importance of allowing
models to explain their decisions, which can help to improve their performance and
reduce the introduction of artefacts.

3.4 Composition of the Final Dataset

The final dataset consists of 4,267 samples, organised into verified and unverified
groups. The verified set includes 2,616 manually annotated samples, with 787 real
samples (Gold) and 1,829 synthetic samples (Silver). The remaining 1,651 samples are
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Table 2

Gold (verified), Silver (verified), and Bronze (unverified) samples⇤

Type age disability feminine general masculine neutral racial sex.

Gold 161 93 31 84 73 395 44 37
Silver 40 110 163 120 125 957 150 164

Bronze 440 451 405 517 422 0 469 466
Total 641 654 599 721 620 1352 663 667

⇤Gold are real job descriptions, while Silver and Bronze are synthetic.
⇤Biased (non-neutral) samples can have multiple labels.

unverified annotated synthetic data (Bronze). A detailed breakdown of sample distri-
bution by label and data collection methods is provided in Table 2.

4. Methodology: Model Architectures

This section covers the model architectures and testing methodologies used to evaluate
the effectiveness of LLMs in detecting implicit bias in job descriptions. This reflects the
study’s focus on comparing methods with and without domain adaptation.

4.1 Model Architecture Overview

The models selected for our study are given.

4.1.1 Encoder Architecturer BERT (Bidirectional Encoder Representations from Transformers): Developed by
Google, BERT is designed to capture the context of words in search queries. Its
architecture enables the model to learn contextualised representations of words
by jointly conditioning on both left and right context (Devlin et al. 2019).r RoBERTa (A Robustly Optimised BERT Approach): Built on top of BERT’s archi-
tecture, RoBERTa is a variant developed by Facebook AI. RoBERTa introduces
several key modifications, including longer training with larger batches, more
data, and dynamic masking, which improves its performance and generalisation
capabilities (Liu et al. 2019).

4.1.2 Encoder-Decoder Architecture

We selected one prominent encoder-decoder model, Flan-T5. Developed by Google,
Flan-T5 combines the strengths of an encoder to understand input data and a decoder
to generate relevant outputs. Additionally, Flan-T5 incorporates instruction fine-tuning,
which enables the model to improve its performance and generalisation to unseen
tasks (Raffel et al. 2020; Chung et al. 2024).

4.1.3 Decoder Architecture

We selected three prominent decoder-based models, all of which are autoregressive
models that generate text by predicting the next word in a sequence.
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1. Phi-3: Developed by Microsoft (Abdin et al. 2024).
2. LLama 3: Developed by Meta (Grattafiori et al. 2024; AI@Meta 2024).
3. Gemma 2: Developed by Google (Gemma Team 2024).

Additionally, OpenAI’s GPT-4 autoregressive model (OpenAI 2024) was used for
several purposes in this study: data preprocessing, data augmentation, and as a prompt-
ing baseline.

4.2 Model Testing

To evaluate model performance in detecting bias in job descriptions, we used two
methods: fine-tuning and prompting. We fine-tuned the smaller Phi3 Mini (3.8B) model
as an exception to compare its performance to the larger Phi3 Small (7B), which was
tested with prompting only. This approach enabled us to assess the effectiveness of fine-
tuning a smaller model versus prompting a larger one of similar architecture.

4.2.1 Fine-Tuning

We applied the Low-Rank Adaptation (LoRA) approach to fine-tune the models, which
enabled us to reduce the parameter count of the over billion-parameter models to 4-bit
precision using the QLoRA approach (Hu et al. 2022; Dettmers et al. 2023). This allowed
us to train the models on a single GPU. QLoRA was applied to all models except BERT
and RoBERTa, which were fine-tuned using the standard approach. The decoder models
used for fine-tuning were standard base models, except Phi3, which was only available
as an instruction-tuned model.

4.2.2 Prompting (In-Context Learning)

We evaluated the instruction-tuned decoder models using four prompting approaches:

r Zero-Shot (pZS): Models were prompted without providing examples and with-
out task-specific training.r Few-Shot (pFS): Models were provided with a small number of example inputs
and corresponding outputs, with the expectation that the model could generalise
from these examples when given unseen inputs (Brown et al. 2020).r Chain-of-Thought (pCoT): Models were guided through a series of reasoning
steps, with the expectation that breaking a complex problem into logical steps
would enhance the reasoning performance (Wei et al. 2022). We utilised the Zero-
Shot CoT method (Kojima et al. 2022).r Self-Consistency (pSC): Multiple diverse outputs were generated for the same
prompt, and the final answer was determined by selecting the most consistent
response among these outputs (Wang et al. 2023). We applied three iterations of
chain-of-thought reasoning with a majority vote for each label.

5. Experimental Setup

To investigate the research questions, we conducted a series of experiments designed to
facilitate a comparative analysis, while controlling most of the relevant conditions.
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Table 3

Dataset Distribution Before/After Adding Unverified Synthetic Data

Set Samples (Before) Samples (After) Difference

Training 1,439 | 55.01% 3,090 | 72.42% +1,651
Validation 593 | 22.67% 593 | 13.90% 0

Testing 584 | 22.32% 584 | 13.69% 0

Total 2,616 4,267 +1,651

5.1 Dataset Splitting

The manually verified samples were shuffled. The validation and test sets were organ-
ised to include exactly 80 manually verified samples per label, while the training set
contained at least 34 manually verified samples per label for the development of n-shot
prompts. This resulted in a distribution of 55.01% for training (1,439 samples), 22.67%
for validation (593 samples), and 22.32% for testing (584 samples). The training set was
then supplemented with 1,651 unverified synthetic samples containing zero or more
labels. This resulted in an overall dataset split of 72.42% for training (3,090 samples),
13.90% for validation (593 samples), and 13.69% for testing (584 samples), making up a
total of 4,267 samples (see Table 3).

The fine-tuning experiments were trained on the full training split, while the
prompting n-shot experiments operated only on the verified samples of the train-
ing split. Both groups of experiments were evaluated using the validation split for
prompt/parameter tuning and the test split for final results.

5.2 Baseline Models for Comparison

We selected BERT (base-uncased) as our primary baseline and GPT-4o for zero-shot
prompting as a secondary baseline.

5.3 Binary Vector Encoding for Multi-Label Classification

Considering that this is a multi-label problem, a label is represented as an 8-dimensional
binary vector, where each bit corresponds to the presence or absence of a particular
class.

y = [y0, y1, y2, y3, y4, y5, y6, y7]

where yi 2 {0, 1} for i = 0, 1, 2, . . . , 7. Each position yi corresponds to a specific class:

y0 : age y2 : feminine y4 : masculine y6 : sexuality
y1 : disability y3 : general y5 : racial y7 : neutral
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Table 4

Parameters, learning rate ⌘, memory, power, time

Model Size (109) ⌘ GPUGiB W Thrs

BERT base 0.11 3⇥ 10�5 2.85 114 0.12
BERT large 0.34 3⇥ 10�5 6.78 279 0.27
RoBERTa base 0.13 3⇥ 10�5 3.13 101 0.13
RoBERTa large 0.36 3⇥ 10�5 7.17 312 0.15
Flan T5 XL 2.85 1⇥ 10�3 44.50 244 1.47
Phi3 Mini 3.82 1⇥ 10�4 7.44 330 1.82
Llama3 8B 8.03 1⇥ 10�4 12.61 355 4.43
Gemma2 9B 9.24 1⇥ 10�4 15.35 269 4.18

5.4 Fine-Tuning Setup

Fine-tuning for multi-label classification differs across architectures. In encoder-based
models (BERT, RoBERTa), a randomly initialised linear layer is added on top of the
pooled output as the classification head. The loss function used is binary cross-entropy,
which independently evaluates the probability of each label being present. In encoder-
decoder models (Flan-T5), the process follows a sequence-to-sequence approach. The
input text is tokenised and processed by the encoder, while the labels are converted
into a textual sequence (e.g., concatenated label names) and tokenised. The decoder
generates token sequences representing the labels. Cross-entropy loss is applied to
compare the predicted and actual token sequences of labels. For decoder-based models
(LLaMA, Gemma, Phi3), which are autoregressive, multi-label classification requires
adding a sequence classification head. A linear layer maps the hidden states to logits,
using the hidden state of the final token to generate the pooled logits for classification.
Similar to encoder-based models, the loss function used is binary cross-entropy.

As the objective of the study is to compare models rather than optimise hyper-
parameters, the approach was to keep the number of hyperparameter changes to a
minimum for a more controlled comparison. For all models, the learning rate was
adjusted (see Table 4). For the 4-bit precision models, the LoRA rank (r) and scaling
factor (↵) parameters were adjusted, keeping them equal to maintain the scaling weights
at 1.0. LoRA configurations are presented in Table 5. All other hyper-parameters were
kept constant across models according to software defaults, except for RoBERTa large,
where a warm-up ratio of 0.1 was set due to its initially poor performance.

Overfitting is a common problem with large language models, and regularisation
techniques were applied to mitigate it. However, to ensure a fair comparison across all
models, customised regularisation techniques for each model were avoided. Instead, a
more balanced approach was taken. While some models reduced overfitting through
more aggressive dropout and weight decay, others experienced significant performance
deterioration. Therefore, dropout rates of 0.1 and a weight decay of 0.001 were chosen
as a good balance across models. A batch size of 8 was used, as having a small size
can introduce noise in the gradient updates, serving as an additional regulariser while
helping with memory constraints with the larger models such as Flan-T5 XL. Training
epochs were set to a maximum of 3. As a result, some overfitting is expected but is
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Table 5

Low-Rank Adaptation Parameters

Model Size4bit(10
9
) r = ↵ ✓LoRA (million) Layers

Flan T5 XL 1.78 32 70.78 | 2.42% All Linear
Phi3 Mini 1.97 32 25.24 | 0.67% All Linear
Llama3 8B 4.12 16 42.04 | 0.56% All Linear
Gemma2 9B 5.21 32 108.18 | 1.16% All Linear

System User Assistant
context

prompt

response

Figure 4

Interaction Between System, User, and Assistant Roles.

acceptable since all models will be tested with the same unseen data and evaluated
accordingly.

The experiments used an NVIDIA L40S 48GB GPU, with a container image stan-
dardising the software component versions (Appendix C-C4).

5.5 Prompting (In-Context Learning)

In-context learning involves presenting a model with a task description or prompt,
along with context, and expecting it to generate a relevant response. This method is
well-suited to decoder (autoregressive) models, which can naturally generate coherent,
extended text in response to prompts and produce relevant content even for tasks they
haven’t been specifically fine-tuned for. We did not apply in-context learning to encoder-
only or encoder-decoder models, applying prompting solely to decoder models (Llama,
Gemma, Phi3).

The interaction with the LLM involves three roles: the System, which sets the
tone and context for the conversation; the User, who provides input or queries; and
the Assistant, which generates responses to the input. This conversational format is
visually represented in Figure 4.

The structure and wording for each prompt setting and for each evaluated model
was arrived at through manual iterative experimentation. The structure and compo-
nents of the user prompt are presented in Prompt 1.

The generated text returned in the assistant message is parsed using regular expres-
sions to produce the predicted label. Prompting flexibility allows the neutral label class
to be treated as the special case that it is: it should be true only if all other label classes
are false, and false if at least one is true. The prompts are designed to minimise any

92



Everitt et al. Large Language Models for Detecting Bias in Job Descriptions

PROMPT 1: User Prompt Structure

TASK: A short component that describes the task, sometimes used as a
system prompt.
INSTRUCTION: A longer component that directs the LLM to analyse a sample, lists

the seven bias categories and directs the model towards strictness.

EVIDENCE: Input text using the format:
Job Posting: \n ${text} \n ===END===

CLOSING INSTRUCTION: Asks if the ${text} contains implicit bias, specifies the

format, directs a ‘no bias’ response as the neutral label, and states no further

explanation is needed.

response that breaks this logic. While structured generation techniques (Willard and
Louf 2023) could have been employed to ensure more rigid control over the outputs,
they were not deemed necessary. The outputs were already structured in a consistent
and acceptable manner.

The performance of each model is evaluated under four prompt settings: Zero-shot,
Few-shot, Chain-of-thought and Self-consistency Chain-of-thought. The structure and
wording of each prompt was optimised individually using the validation dataset. Final
prompt evaluation was done using the test dataset.

5.5.1 Zero-shot (pZS)

The LLMs under evaluation are prompted with each sample in the test dataset. The
zero-shot prompt for model Meta-Llama-3-8B-Instruct is shown in Prompt 2, with a
truncated sample for brevity. For the prompts used, see Appendix B, Prompts 3 and 4.

5.5.2 Few-shot (pFS)

Few-shot prompts use non-synthetic samples and labels from the train dataset split.
Sequential user and assistant messages are constructed, ending with a final user message
containing the actual job description being tested. For Llama-3, the system and instruc-
tion components appear only in the initial user message, while subsequent ones contain
only evidence and closing instruction. Phi-3 includes all four components in each user
message. For the prompts used, see Appendix B, Prompts 5, 6, and 7.

5.5.3 Chain-of-thought (pCoT)

The chain-of-thought technique employed here is a form of zero-shot, as it includes
no exemplars in the prompt. The prompt includes reasoning steps to guide the model
in checking each bias type, with a minimal prompt found to be most effective for this
purpose. Extra clarification is added only for the general category. For the prompts used,
see Appendix B, Prompts 8, 9, and 10.

5.5.4 Self-consistency (pSC)

The previous three prompting strategies used greedy search decoding, which is deter-
ministic. Self-consistency prompting uses sampling with temperature and nucleus sam-
pling (top_p) chosen through grid search for each model (Table 6). Temperature controls
randomness in text generation, while nucleus sampling selects from a distribution based
on cumulative probability. The same prompts used for chain-of-thought prompting are
applied here. Three outputs are generated, each converted to an 8-dimensional binary
vector. The final output is determined by a position-wise majority vote.
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PROMPT 2: Zero Shot (pZS) - Meta-Llama-3-8B-Instruct

SYSTEM You are an analyst of job postings. Your task is to detect implicit
bias, if present.

USER Analyse the job posting for implicit bias. The bias categories are age, . . . Return

the appropriate label only when absolutely sure that the particular bias category is

present in the text.

Job Posting:
Role: Graduate Trainee Recruitment Consultant. Location: Bristol. Package: £20-24K
Basic Salary . . .
===END===

Does the job posting contain any implicit bias? Please respond in the format of

‘Labels: <labels>’ where the possible labels are age, . . . If no bias is detected please

return ‘Labels: neutral’. No further explanation is required.

ASSISTANT Labels: general

Table 6

Self-Consistency Parameters

Parameter Gemma2-9B Llama3-8B Phi3-7B-8k

Temperature 0.70 0.15 0.20
top_p 1.00 0.90 0.80

5.6 Label Extraction

Testing of the chosen models entails extraction of a predicted label from the model
response. The label extraction protocol differs based on whether the model is used for
in-context learning or fine-tuning.

5.6.1 Prompting (In-Context Learning)

For in-context learning experiments (Llama, Gemma, Phi3), words representing the bias
terms or neutral are extracted from each prompt response. In these experiments, the
models rely on in-context learning to generate responses. As the responses are short -
maximum nine words - and very consistent in quality, we used regular expressions to
extract the bias terms (Appendix E-D). To construct the label, each position in the 8-bit
label is set to 0 or 1, depending on whether each bias type is absent or present in the
response.

5.6.2 Fine-tuning

For encoder (BERT, RoBERTa) and decoder (Llama, Gemma, Phi3) models, the sigmoid
function and binarisation of its output were used to create the predicted labels. Logit
outputs were converted into probabilities, with a threshold of 0.5 applied for binarisa-
tion.

ŷ =

(
1, if 1

1+e�x � 0.5

0, otherwise
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For the T5-Flan model, due to its sequence-to-sequence nature, the presence of each
label was checked directly against the generated output sequence.

6. Results & Discussion

6.1 Evaluation Metrics

To assess the performance of the models, we considered using K-fold validation for the
encoder models, which would have provided a more comprehensive evaluation. How-
ever, due to the lengthy training times required for the multi-billion parameter decoder
models, we decided instead to use a straightforward hold-out validation method. The
hold-out validation method involves splitting the data into training and validation sets,
with the validation set used to evaluate the models’ performance. This method was
applied across all experiments to ensure consistency in the evaluation process, allowing
for a direct comparison of the models’ performance and their generalisation abilities.
To measure the performance of our experiments, we used precision, recall, and F-
score (Pedregosa et al. 2011). Due to the multi-label nature of the problem, we used
sample-wise averaging whereby these metrics are calculated for each sample and then
averaged across all samples. A fourth metric, exact match ratio, is also applied.

Precision. The metric computes the proportion of correctly predicted true positive
samples to the total predicted positives.

1

N

NX

i=1

TPi

TPj + FPi

Recall. The proportion of correctly predicted true positives to all the positives in the
category.

1

N

NX

i=1

TPi

TPi + FNi

F�-Score. This metric balances the precision and recall scores. As we want recall and
precision to be equally important, we used � = 1.

1

N

NX

i=1

(1 + �2) · Precisioni · Recalli
�2 · Precisioni + Recalli

Exact Match Ratio (EMR). This metric computes the proportion of samples that have
all their predicted labels exactly matching the true labels.

1

N

NX

i=1

I(ŷi = yi)
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Table 7

Fine-Tuning vs Prompting Performance.

Model Type F1 Precision Recall EMR

BASELINES

BERT base uncased FT 0.67 0.67 0.69 0.62
GPT-4o-2024-05-13 pZS 0.59 0.61 0.59 0.56
BERT large uncased FT 0.70 0.70 0.72 0.67
RoBERTa base FT 0.71 0.71 0.73 0.66
RoBERTa large FT 0.64 0.63 0.65 0.59
Flan T5 XL FT 0.74 0.74 0.75 0.70

Gemma2-9B

FT 0.72 0.71 0.74 0.64
pZS 0.56 0.55 0.60 0.47
pFS 0.55 0.52 0.60 0.42
pCoT 0.56 0.54 0.62 0.44
pSC 0.56 0.54 0.62 0.44

Llama3-8B

FT 0.71 0.70 0.74 0.65
pZS 0.46 0.46 0.46 0.44
pFS 0.54 0.54 0.61 0.41
pCoT 0.48 0.48 0.48 0.45
pSC 0.48 0.48 0.48 0.45

Phi3 3.8B 4k FT 0.67 0.66 0.69 0.61

Phi3-7B-8k

pZS 0.56 0.55 0.59 0.47
pFS 0.46 0.45 0.49 0.40
pCoT 0.58 0.57 0.63 0.47
pSC 0.59 0.57 0.63 0.47

Bold boxes mark the highest value(s) per metric; lighter boxes mark the lowest.

6.2 Results and Analysis

The comparative performance between fine-tuning (FT) and prompting experiments
(PT) demonstrates that fine-tuning consistently outperforms prompting in the task
of multi-label job description bias detection. Fine-tuned models achieve higher and
more reliable F1, precision, recall, and exact match ratio, as shown by their consistent
clustering towards higher precision and recall values. This suggests that fine-tuning is
a more effective approach for detecting bias in job descriptions, as it allows the model
to learn specific patterns and relationships in the data that are relevant to the task.

Table 7 and Figure 5 present the overall model performance, while Figure 6 com-
pares the category-wise performance of the leading models against baseline models.
Additionally, detailed F1 results are provided in Table 8, with precision and recall results
shown in Table 9.

6.2.1 Encoder-Decoder vs Decoder Dichotomy

Interestingly, as shown in (Table 7, Fig. 6), Flan T5 XL, an encoder-decoder model,
outperforms the decoder-only models in our experiments. We note that it is more
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Figure 5

Model Performance: Precision vs Recall

computationally expensive to train than the encoders (Table 4). However, it has fewer
parameters and requires less compute compared to most decoder models employed in
our study.
This suggests that the encoder-decoder architecture may be better suited for multi-
label job description bias detection tasks. One possible hypothesis is that the encoder-
decoder architecture allows for a more nuanced representation of the input text, which
is beneficial for detecting subtle biases. It benefits from leveraging the strengths of both
encoder and decoder architectures. The encoder allows for a more nuanced representa-
tion of the input text, while the decoder enables the model to generate more accurate
and informative outputs. Additionally, the encoder-decoder architecture may be able to
capture longer-range dependencies in the text, which is important for understanding
the context and nuances of job descriptions.
Gemma2 9B FT is the second-best performer, and appears to be a good trade-off in
terms of compute and training time. This suggests that Gemma2-9B-FT is a good
choice for applications where accuracy is critical, but computational resources are not a
concern. However, as our results show, Gemma2-9B-FT is still less competitive to Flan-
T5 XL with approximately 2.85B parameters, which suggests that the encoder-decoder
architecture may be more effective for this task. One possible hypothesis is that the
decoder-only architecture may be more prone to overfitting, particularly when dealing
with complex and nuanced tasks like multi-label job description bias detection.

6.2.2 Performance Comparison and Occlusion Analysis of Encoder Models

The BERT large model shows improved performance compared to the baseline (BERT
base) but still falls short of both RoBERTa base and Llama3 FT. Although RoBERTa large
initially underperformed, its results improved with the introduction of a warmup ratio,
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Figure 6

Top Performers’ Comparison Against Baseline Models

outperforming the PT experiments. However, it remained the lowest performer among
the FT experiments. This suggests that the BERT large model is a good choice for multi-
label job description classification tasks where accuracy is important, but computational
resources are limited. The results also suggest that the performance of the BERT large
model can be improved with careful tuning of hyperparameters, such as the warmup
ratio.

Analysis of RoBERTa. A notable drop in performance, highlighted in Table 8, is ob-
served for the general label. The base model achieves an F1 score of 0.62, whereas the
large model scores only 0.26. To further investigate these performance differences, we
present examples where the models’ predictions diverge from the ground truth labels.
These samples were selected based on notable discrepancies in confidence scores (prob-
abilities) between the base and large RoBERTa models, with predicted labels assigned
when confidence scores are equal to or greater than 0.5.

We employed a token-level ablation method, specifically an occlusion analysis, to
identify influential phrases contributing to the models’ predictions. This technique
involves systematically masking each word or phrase in the input text with a neutral
placeholder token (e.g., 00000) and recalculating the model’s confidence scores. By
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Table 8

Category-wise Performance: F1

Model Type Age Dis. Fem. Gen. Mas. Neu. Rac. Sex.

BERT base FT 0.66 0.54 0.94 0.38 0.61 0.47 0.85 0.87
GPT-4o pZS 0.70 0.59 0.85 0.31 0.52 0.33 0.64 0.40
BERT large FT 0.63 0.56 0.94 0.60 0.67 0.47 0.87 0.85
RoBERTa base FT 0.63 0.63 0.93 0.62 0.67 0.50 0.82 0.92
RoBERTa large FT 0.61 0.60 0.96 0.26 0.64 0.48 0.85 0.86
Flan T5 XL FT 0.71 0.55 0.91 0.68 0.74 0.53 0.83 0.88

Gemma2-9B

FT 0.65 0.66 0.95 0.60 0.66 0.49 0.86 0.85
pZS 0.58 0.49 0.88 0.44 0.43 0.35 0.70 0.57
pFS 0.54 0.38 0.81 0.36 0.51 0.27 0.67 0.62
pCOT 0.56 0.53 0.83 0.37 0.50 0.39 0.69 0.57
pSC 0.57 0.51 0.83 0.38 0.52 0.41 0.69 0.57

Llama3-8B

FT 0.63 0.64 0.92 0.67 0.63 0.50 0.84 0.84
pZS 0.33 0.42 0.84 0.36 0.31 0.34 0.66 0.28
pFS 0.56 0.63 0.69 0.31 0.42 0.40 0.73 0.55
pCOT 0.45 0.50 0.82 0.33 0.35 0.35 0.71 0.22
pSC 0.44 0.52 0.82 0.33 0.33 0.35 0.71 0.22

Phi3 3.8B 4k FT 0.55 0.60 0.93 0.57 0.61 0.44 0.85 0.84

Phi3-7B 8k

pZS 0.64 0.47 0.87 0.27 0.50 0.36 0.73 0.64
pFS 0.28 0.31 0.83 0.24 0.43 0.36 0.62 0.56
pCOT 0.56 0.62 0.89 0.35 0.53 0.33 0.72 0.69
pSC 0.57 0.63 0.89 0.36 0.53 0.34 0.74 0.69

Bold boxes mark the highest value(s) per metric; lighter boxes mark the lowest.

observing changes in the output scores resulting from the omission of specific tokens,
we can pinpoint which words have the most significant impact on the model’s decisions.

In the examples below, certain phrases are removed (shown as crossed out) and
sometimes replaced with text (shown in bold) to indicate a modification that would
substantially lower the confidence score of the occlusion target label. This method
highlights the models’ sensitivity to particular linguistic cues.r

Truth: general; Occlusion Target: general; Confidence: base=0.97, large=0.02
. . . Job Type: Chauffeur . . . Qualifications and Experience: Prior experience as a chauffeur or in
a related field is preferred. Must possess a valid driver’s license with a clean driving recordMust

hold a valid driver’s licence with a safe and responsible driving record. A high school
diploma or equivalent is required; degree from a reputable institution is desirable. Ability to
pass a thorough background check is mandatory. Perks and Benefits: We are committed to fair
and equitable pay practices. The salary for this position ranges from $45,000 to $60,000 USD
per year, based on your experience and skills . . .r
Truth: feminine; Occlusion Target: feminine; Confidence: base=0.85, large=0.09
. . . Two years ago, there were only 2 girlsemployees in our HR department. Now we have 4
and we are looking for the 5th person, that is how fast we grow our team of boys and girls!
. . .
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Table 9

Category-wise Performance: Precision and Recall

Model Type Age Dis. Fem. Gen. Mas. Neu. Rac. Sex.

BERT base FT 84¦54 79¦41 95¦94 90¦24 72¦54 32¦86 89¦81 94¦81
GPT-4o pZS 75¦66 62¦56 87¦82 57¦21 74¦40 21¦71 95¦49 100¦25
BERT large FT 87¦50 91¦40 95¦93 88¦45 82¦56 32¦88 87¦86 97¦76
RoBERTa base FT 80¦51 87¦50 93¦94 75¦53 78¦59 38¦72 83¦81 96¦89
RoBERTa large FT 86¦47 88¦45 97¦94 65¦16 76¦55 33¦89 87¦84 97¦78
Flan T5 XL FT 89¦59 89¦40 92¦90 79¦60 83¦68 37¦93 89¦79 96¦81

Gemma2-9B

FT 72¦60 95¦50 99¦91 84¦46 65¦66 34¦86 90¦82 97¦75
pZS 72¦49 74¦36 80¦97 35¦59 29¦86 48¦28 81¦62 97¦40
pFS 61¦49 68¦26 70¦95 25¦68 36¦86 50¦19 61¦74 79¦51

pCOT 66¦49 82¦39 73¦96 26¦69 35¦90 56¦30 78¦62 97¦40
pSC 67¦49 81¦38 73¦96 26¦69 36¦91 60¦31 78¦62 97¦40

Llama3-8B

FT 91¦49 97¦47 99¦86 82¦56 62¦65 35¦90 89¦80 95¦75
pZS 74¦21 64¦31 85¦84 30¦46 94¦19 22¦70 89¦53 93¦16
pFS 65¦50 60¦66 55¦95 22¦54 73¦30 31¦56 76¦70 97¦39

pCOT 78¦31 68¦40 79¦85 37¦30 75¦23 23¦81 89¦59 100¦12
pSC 76¦31 70¦41 79¦85 37¦30 74¦21 23¦81 90¦59 100¦12

Phi3 3.8B 4k FT 89¦40 97¦44 99¦89 65¦51 95¦45 30¦90 93¦79 95¦75

Phi3-7B 8k

pZS 62¦66 72¦35 81¦95 23¦35 54¦47 29¦47 91¦61 70¦60
pFS 93¦16 88¦19 73¦96 20¦31 71¦31 23¦81 95¦46 89¦41

pCOT 47¦70 66¦59 84¦95 28¦49 58¦49 30¦35 86¦62 79¦61
pSC 47¦71 67¦59 84¦95 28¦50 58¦49 32¦36 89¦62 79¦61

Note: [Precision¦Recall], values are shown without leading zeros or decimals for readability.

r
Truth: age; Occlusion Target: feminine; Confidence: base=0.92, large=0.26
Job title: Graduate Sales Manager . . . this role offers a recent graduate the opportunity to gain
real-life experience from very early on, all with the support of a nurturingan encouraging

office environment. . . .r
Truth: neutral; Occlusion Target: feminine; Confidence: base=0.05, large=0.60
. . . is a thriving community hospital that proudly provides acute care services . . . As a key
member of the Women & Children’s Health team, the Obstetrics Registered Practical Nurse
is responsible for assessing, analyzing, prioritizing, planning, and evaluating care in collab-
oration with women and families in both normal and complex situations. The nursing care
includes antenatal care, postpartum care, breastfeeding support, infant care, and care following
perinatal loss. . . . Breastfeeding Certificate Program required or willingness to complete within
1 year. . . . and emotional needs of the post-partum women and neonates required . . .

By analysing these examples, we observe that the base RoBERTa model generally
assigns higher confidence to the correct labels than the large RoBERTa model. However,
this is not always the case. In the Graduate Sales Manager example, the base model
incorrectly assigns a high confidence score (0.92) to the feminine label, despite the ground
truth being age. This misclassification is influenced by the word nurturing, which the
base model strongly associates with the feminine label.

In the Chauffeur example, the only synthetic example presented, the large model
did not recognise the potential ambiguity in the term clean driving record, which could
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unintentionally exclude candidates with minor infractions that do not reflect their actual
driving skills or safety and are still suitable for the role. Additionally, the term reputable
institution may suggest prestige, creating unnecessary ambiguity or barriers since a
high school diploma or equivalent is already requested. The requirement of a thorough
background check could also introduce ambiguity, but the occlusion analysis showed that
neither model recognised this issue.

In the HR department example, the occlusion analysis showed that the word girls
significantly contributed to the feminine label. When girls was replaced with employees,
the base model no longer predicted the feminine label. However, adding the phrase our
team of boys and girls did not reintroduce the feminine classification, suggesting that it is
not simply the presence of girls but its contextual use that influences the classification.
This indicates that the base model is sensitive to the contextual application of gender-
specific terms rather than just their occurrence. In contrast, the large model did not
detect the cue that the job description is specifically seeking a fifth girl.

In the community hospital example, the large model misclassified the sample as femi-
nine, and the occlusion analysis identified the word women as a significant contributing
factor. By eliminating the word, the large model’s confidence in the feminine label was
substantially reduced and no longer classified it as such. However, despite the presence
of several words associated with females—such as Women’s and Children’s Health, breast-
feeding, and postpartum—these terms are contextually appropriate and do not represent
feminine bias in the text. This suggests that the large model may be overly sensitive to
some gender-specific terms, misclassifying neutral or appropriately gendered content
as biased.

The occlusion analysis shows that specific words or phrases can significantly impact
both models’ predictions and performance on particular labels. These findings suggest
that larger models do not inherently guarantee improved performance, and smaller
models may misclassify due to influential linguistic cues. Thus, careful hyperparameter
tuning and a deeper understanding of how language cues affect predictions remain
important. Further investigation into these influences may improve the performance of
language models in multi-label classification for job descriptions.

6.2.3 Prompting (In-Context Learning) Experiments

Prompting experiments show significant variability in performance across differ-
ent prompting methods and categories. GPT-4o (pZS), Phi3-7B-8k (pZS, pCoT), and
Gemma2-9B (pFS, pCoT, pSC) showed moderate precision and recall. GPT-4o (pZS)
was the best PT experiment in terms of the exact match ratio, despite its poor per-
formance in detecting sexuality bias compared to Phi3-7B-8k (pSC), the second leading
PT experiment by F1 score (Fig. 6). Gemma2-9B PT performed competitively to Phi3-
7B-8k (pSC) while the Llama3-8B models (pSC, pZS) and Phi3-7B-8k (pFS) performed
poorly compared to the other models in our experiments. This suggests that the choice
of prompting method and category can have a significant impact on the performance of
the model.

Category-wise Performance. All experiments, whether fine-tuned or prompted, per-
formed well on the feminine category, indicating strength in this area. Fine-tuned exper-
iments performed well on racial and sexuality. Other models in our experiments showed
broader score distributions across categories, with sexuality showing wide variability,
followed by age. Interestingly, most models in our experiments struggled with neutral,
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disability, and general to some degree. This suggests that the models are able to detect
bias in certain categories, but may struggle with others.

Challenges in Interpreting Results. The general category is particularly challenging to
interpret due to its subjective nature; for instance, the absence of a diversity statement
or salary transparency can be perceived as general bias. Interestingly, age and disability
did not perform as well, despite being majority classes during manual annotation of
real job descriptions. We believe this suggests that the models may be biased towards
certain categories and that the performance of the models can be improved with careful
tuning of hyperparameters and the use of more diverse training data.

7. Conclusions

This research investigated the application of LLMs for the detection of implicit bias in
job descriptions. A dataset was constructed for the task, consisting of a mix of gold,
silver, and bronze-standard labelled data, with the validation and test sets comprising
entirely gold and silver-standard labelled data. This publicly available dataset provides
a valuable resource for future researchers in related fields.

Different model architectures were fine-tuned and evaluated for their ability to
classify text as containing one or more of seven bias types. Three decoder-only models
were tested under four distinct prompt settings and compared against a zero-shot
GPT-4o baseline. The feminine category consistently achieved high F1 scores across all
experiments, indicating strong performance in this area. Fine-tuned models consistently
outperformed non-fine-tuned ones, with Flan-T5-XL emerging as the top performer.
Despite its smaller size (2.85B parameters) compared to the larger decoder models
(including GPT-4o), the fine-tuned Flan-T5-XL demonstrated notable performance. This
suggests that targeted fine-tuning with encoder-decoder architectures can result in more
efficient models with lower energy and computational costs when detecting implicit
bias in job descriptions.

We restricted our research to open-source models with less than 10B parameters.
Future research could investigate larger models to determine if the increased scale
enhances their ability to identify the nuanced language of implicit bias. Another future
area of research would be in the instruction-tuning of the chosen LLMs on a curated job
description dataset.
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Appendix

Appendices, test results, regular expressions and source code are available at:r https://github.com/2024-mcm-everitt-ryan.

Datasets and the model repository can be accessed at:r https://huggingface.co/2024-mcm-everitt-ryan.
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The software developed for data preparation and augmentation has been contributed as
plugins to the Hop Orchestration Platform (HOP), a project under the Apache Software
Foundation that enables the visual design of data processing workflows. The code is
released under the open-source Apache License, Version 2.0, making it accessible to a
broader community beyond this work.r https://hop.apache.org.r https://github.com/apache/hop.
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