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Leveraging Bias in Pre-trained Word
Embeddings for Unsupervised
Microaggression Detection

Tolúlo. pé. Ògúnrè.mí⇤
Stanford University, United States

Valerio Basile⇤⇤
University of Turin, Italy

Tommaso Caselli†
University of Groningen, Netherlands

Microaggressions are subtle manifestations of bias (Breitfeller et al. 2019). These demonstrations
of bias can often be classified as a subset of abusive language. However, not much focus has been
placed on the recognition of these instances. As a result, limited data is available on the topic, and
only in English. Being able to detect microaggressions without the need for labeled data would
be advantageous since it would allow content moderation also for languages lacking annotated
data. In this study, we introduce an unsupervised method to detect microaggressions in natural
language expressions. The algorithm relies on pre-trained word-embeddings, leveraging the bias
encoded in the model in order to detect microaggressions in unseen textual instances. We test the
method on a dataset of racial and gender-based microaggressions, reporting promising results.
We further run the algorithm on out-of-domain unseen data with the purpose of bootstrapping
corpora of microaggressions “in the wild”, perform a pilot experiment with prompt-based learn-
ing, and discuss the benefits and drawbacks of our proposed method.1

1. Introduction

The growth of Social Media platforms has been accompanied by an increased visibil-
ity of expressions of socially unacceptable language online. In a 2016 Eurobarometer
survey, 75% of people who follow or participate in online discussions have witnessed
or experienced abuse or hate speech. With this umbrella term, different phenomena
can be identified ranging from offensive language to more complex and dangerous
ones, such as hate speech or doxing. Recently, there has been a growing interest by the
Natural Language Processing community in the development of language resources
and systems to counteract socially unacceptable language online. Most previous work
has focused on few, easy to model phenomena, ignoring more subtle and complex ones,
such as microaggressions (Jurgens, Hemphill, and Chandrasekharan 2019).

Microaggressions are brief, everyday exchanges that denigrate stigmatised and cul-
turally marginalised groups (Merriam-Webster 2021). They are not always perceived as
hurtful by either party, and they can often be detected as positive statements by current
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1 Copyright ©2021 for this paper by its authors. Use permitted under Creative Commons License
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hate-speech detection systems (Breitfeller et al. 2019). The occasionally unintentional
hurt caused by such comments is a reflection of how certain stereotypes of others
are baked into society. Sue et al. (2007) define microaggressions in the racial context,
particularly when directed toward people of color, as “brief and commonplace daily
verbal, behavioral, or environmental indignities”, such as: “you are a credit to your race.”
(intended message: it is unusual for someone of your race to be intelligent) or “do you
think you’re ready for college?” (indented message: it is unusual for people of color to
succeed). The need for moderation of hateful content has previously been explored. For
instance, Mathew et al. (2019b) analyses the temporal effects of allowing hate speech
on Gab, a social network known for attracting a right-wing userbase, and finds that the
language of users tends to become more and more similar to that of hateful users over
time. Mathew et al. (2019a) further highlights that the spreading speed and reach of
hateful content is much higher than the non-hateful content. As a result, being able to
remove instances of hateful language, such as microaggressions, is of great importance.

Previous work on microaggressions with computational methods is quite recent.
Breitfeller et al. (2019) is one of the first works to address microaggressions in a sys-
tematic way, also introducing a first dataset, SelfMA. A further contribution specifically
focused on racial microaggression is Ali et al. (2020), where the authors focus on the
development of machine learning systems. In terms of automatic classification, these
works propose supervised methods based on linguistic features, obtaining acceptable
performance but at the same time tying the results to specific benchmarks and training
sets.

In this study we introduce an unsupervised method for microaggression detection.
Our method utilizes the existing bias in word-embeddings to detect words with bi-
ased connotations in the message. Although unsupervised approaches tend to be less
competitive than their supervised counterparts, our method is language-independent
and thus it can be applied to any language for which embedding representations exist.
Furthermore, the reliance of our methods on specific lexical items and their context of
occurrence makes transparent the flagging of a message as an instance of a microaggres-
sion. In addition to the usefulness of our method in languages with no labeled data, the
reliance of our model on words in the sentences would make it interpretable as it allows
human moderators to understand what the system has based its decision on.

Our contributions can be summarised as follows:

r we introduce a new unsupervised method for the detection of microaggressions
which builds on top of pre-trained word embeddings;r we further test the proposed algorithm on unseen data from a different domain
(i.e., Twitter), in order to qualitatively evaluate its efficacy in discovering new
instances of microaggression;r we compare our approach with prompt-based learning to better assess its advan-
tages and limits.

The rest of this paper is structured as follows: we introduce our method in Section 2.
The data and our results are reported in Section 3. We deploy our model and discuss its
limitations in Section 4. The application of our unsupervised approach on the Twitter
data and the results of this experiment are presented in Section 5. In addition to this,
we further compare our method with a very recent approach, i.e., prompt-based learning,
showing its potential advantages in Section 6. Finally, we present the conclusion and
future work in Section 7.
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Figure 1
Worked example of unsupervised method for word "chopsticks" in the message "Ford: Built With
Tools, Not With Chopsticks"

2. Use the Bias Against the Bias

Embedded representations, either from pre-trained word embeddings or pre-trained
language models, have been shown to contain and amplify the biases present in the
data used to generate them (Bolukbasi et al. 2016; Lauscher and Glavaš 2019; Bhardwaj,
Majumder, and Poria 2020). As such, they often exhibit gender and racial bias (Swinger
et al. 2019). Many studies have attempted to reduce this bias (Yang and Feng 2020; Zhao
et al. 2018; Manzini et al. 2019). In this work, we take a different turn by using this bias
to our advantage: rather than taming the hurtfulness of the representations (Schick,
Udupa, and Schütze 2021), we actively use it to promote social good. In this first
study, we employ word representations derived from generic textual corpora of English,
in order to capture the background knowledge needed to disambiguate instances of
microaggressions in the text. Recently, however, there have been studies involving word
representations created from tailored collections of social media content aimed at cap-
turing abusive phenomena like verbal aggression (Dynel 2021) and hate speech (Caselli
et al. 2021).

We devise a simple and effective method that exploits existing bias in word em-
beddings and identify words in a message that are related to particular and distant
semantic areas in the embedding space. Messages are analysed in three steps: first,
for each token ti we compute its relatedness to a list of manually curated seed words
s = s1, ..., sn denoting potential targets of microaggressions; second, we consider only
the similarities of the pairs (ti, sj) above an empirical similarity threshold (ST ) and
compute their variance vi; finally, we classify the token ti as a micro aggression trigger,
and consequently the message as a micro aggression, if the vi is above an empirically
determined variance threshold (V T ).

The intuitive idea behind this algorithm is that some lexical elements in a verbal
microaggression are often (yet sometimes subtly) hinting at specific features of the
recipient of the message, in an otherwise neutral lexical context.

In this work, we choose to focus on microaggressions related to race and gender,
therefore the seed words have to be chosen accordingly. The seed word lists for race
and gender are, respectively, [white, black, Asian, latino, hispanic, Arab, African, caucasian]
and [girl, boy, man, woman, male, female] for gender. There is also a practical reasons to
focus on gender and race, namely the scarcity of data available for other categories of
microaggression and other idiosincrasies of the available datasets — the religion class
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Table 1
Statistics of the two subsets of the SelfMA dataset used in this paper, and the extra data
downloaded to balance the dataset.

Source Number of posts
SelfMA Gender 1,314
SelfMA Racial 1,278

Tumblr 2,021

was specific to different religions, therefore hard to generalise, sexuality and gender
presented a large overlap, and so on.

An example of how the proposed method works is illustrated in Figure 1. In the
example, consider the word "chopsticks" in the message "Ford: Built With Tools, Not With
Chopsticks" (from the SelfMA dataset, described in Section 3). The target word exhibits a
much higher relatedness to the word Asian (0.237) than any other seed words. Even just
considering the seed words with a similarity above a fixed threshold (white, Asian and,
African), the variance of their similarity score with respect to chopsticks is still higher
than the variance threshold, and therefore this target word, in this context, triggers a
microaggression according to the algorithm. This process is repeated for all the words
in the message in order to detect microaggressions. Some categories of words are bound
to exhibit a high relatedness to all the seed words, e.g., “people” or “human”. This is
the reason to introduce the variance threshold in the final step of our algorithm, to filter
out these cases when classifying a given message, and instead focus on words that are
related to different races (or genders) unevenly, with a skewed distribution of similarity
scores.

An important by-product of this algorithm is that the output is one or more trigger
words, in addition to the microaggression label — in the example, the trigger word is
indeed chopsticks — therefore enabling a more informative and interpretable decision
process.

3. Experiments

To test our method, we use two subsets of the SelfMA: microaggressions.com
dataset (Breitfeller et al. 2019), comprised of 1,314 and 1,278 Tumblr posts respectively2.
The posts in SelfMA are all instances of microaggressions, manually tagged with one
of four categories: race, gender, sexuality and religion. These posts can be tagged with
more than one form of microaggressions, meaning certain instances can appear in both
subsets of race and gender used for the purposes of this study. The dataset consists of
first and second hand accounts of microaggressions, as well as direct quotes of phrases
or sentences said to the person posting. In order to reduce linguistic perturbation
introduced by accounts of a situation, we only take direct quotes found in the dataset
as instances of microaggressions that we can detect with our unsupervised method. For
training, we pull out direct quotes from the gender (561) and racial (519) dataset to test
the algorithm. In order to balance the dataset, we scraped 2,021 random Tumblr posts,
for a total of 4,612 instances. Table 1 summarises the composition of our dataset.

2 Tumblr is a popular American microblogging platform https://www.tumblr.com
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It is important to note that a microaggression can have multiple tags, so there is an
overlap of instances. However, the seed words used to detect microaggression types in
the method are different for each target phenomenon (e.g., race, gender).

We ran the algorithm on the SelfMA dataset, empirically optimising the
two thresholds on the training split, for each word embedding type and each
microaggression category, filtering by the seed words listed in Section 2. We
test the algorithm with three pre-trained word embedding models for English,
namely FastText (Joulin et al. 2017), trained on Wikipedia and Common Crawl,
word2vec (Mikolov et al. 2013), trained on Google News, and GloVe (Pennington,
Socher, and Manning 2014), trained on Wikipedia, GigaWord corpus, and
Common Crawl. The optimization is performed by exhaustive grid search over
the hyperparamter space.

To provide a better context to interpret the results, we also present the results of a
simple baseline method based on the presence of seed words in the text instances. In
this method, an instance is considered a microaggression if and only if any of the seed
words used by the unsupervised algorithm is present in the text.

The results, shown in Table 2, indicate that FastText has a better F1 score on Racial
microaggressions while word2vec performs better on Gender microaggressions. The
difference in performance between FastText and word2vec is not major, and we at-
tribute this to the difference between the corpora on which the two models were trained
(i.e., web crawl and Wikipedia for FastText vs. news data for word2vec). The GloVe
pretrained model, trained on a combination of newswire texts, encyclopedic entries and
texts from the Web, underperforms in both experiments. In general, the absolute figures
are encouraging, especially considering the simplicity of this unsupervised approach.

4. Limitations of Unsupervised Method

Despite promising results with the unsupervised methods, it is important to note that
this method currently works on the basis of one trigger word. An analysis of the set
of trigger words for each instance show that the vast majority of instances marked as
microaggressions are explicitly realized, i.e., they have trigger words that are similar
to or substitutes for our sets of race-related or gender-related seed words e.g Chinese,
Japanese, Mexican, mister, or girlfriend. The mention of a “girlfriend” or the word
“Chinese” alone in a statement should not flag it as a microaggression, so the methods
needs more work to more accurately detect microaggressions with detailed reasoning.
However, as the examples in Table 3 highlight, it suffice the presence of a single word
to a seemingly neutral or positive statement to make it a microaggression. Examples are
in Table 3.

In instances where there are multiple trigger words, the set of words selected seems
to paint a picture explaining why such a word triggers a microaggression. Examples
are in Table 4. In the first example, we see that the person quoted felt the need to
mention that the person spoken about is "Black, you know", because he was smiling.
We see something similar take place when cute is equated to being feminine.

It is possible that a method that incorporates the set of these words, or even the
juxtaposition of individual words with words that don’t get flagged up with the current
method may lead to more precise and categorisations.
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Table 2
Results of the experiment on the Gender and Racial subset of SelfMA, in terms of Precition (P),
Recall (R), and F1-score (F1) on the positive class (MA), on the negative class (not-MA), and their
macro-average. Best scores per microagression category are in bold.

Target Model Class Precision Recall F1-Score

Gender

baseline
not-MA .613 .912 .734
MA .825 .418 .555
macro avg. .644

FastText
not-MA .609 .746 .671
MA .714 .570 .634
macro avg. .680

GloVe
not-MA .692 .380 .491
MA .603 .848 .705
macro avg. .598

word2vec
not-MA .659 .789 .718
MA .769 .634 .694
macro avg. .706

Race

baseline
not-MA .576 .950 .717
MA .826 .253 .388
macro avg. .552

FastText
not-MA .659 .875 .654
MA .814 .547 .752
macro avg. .702

GloVe
not-MA .765 .371 .500
MA .611 .896 .726
macro avg. .613

word2vec
not-MA .640 .814 .747
MA .776 .584 .667
macro avg. .692

5. Discovering Microaggressions

To better understand the performance of our unsupervised model, we performed an
additional experiment. Our goal is to understand the false positive results and the
potential harm the model could cause. To do so, we use our unsupervised model to
label unseen instances from another domain (Twitter) than the SelfMA dataset (Tumblr)
in order to see how the model would perform in detecting microaggressions.

We begin by performing keyword searches on Twitter (using Twitter’s official API)
and collect a new dataset of 3M tweets with seven keywords potentially containing race
and gender expressions. Next, we set the threshold values ST and V T in our model in
order to obtain the highest Precision scores, rather than the highest F1 value. This step is
performed exactly like the optimization described in Section 2 with the only difference
of the target metric. The aim of this step is to only label tweets as microaggressions with
the highest possible degree of confidence. We set ST = 0.12 and V T = 0.014 for racial
microaggressions leading to Precision of .931 and ST = 0.13 and V T = 0.019 for gender-
based microaggressions leading to a Precision of .912. Precision has been measured on
the original SelfMA dataset used as a validation set.
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Table 3
Instances of microaggressions identified by one word.

Instance Trigger word
"I’ve seen you around and always wanted to talk
to you. You just have this wonderful... ethnicity
about you."

ethnicity

"Stop acting like a princess! You’re acting like a
princess!! Ooh... little princess... boo hoo."

princess

"They hit a state trooper head on. And they were
both illegals. Well, I don’t know if they were
illegals, but they had illegal sounding names."

illegals

Table 4
Instances of microaggressions identified by several words.

Instance Trigger words
"Oh he’s very nice. He’s so intelligent and al-
ways happy and smiling, and very professional.
(pause) He’s black, you know."

smiling, black

"You like little cute dogs. That’s feminine." cute, feminine

We then run the unsupervised model on the new Twitter dataset by automatically
labelling 256,843 tweets for gender and 373,631 tweets for race. After the data is labeled,
we manually explore the positive instances in order to evaluate the performance of the
model. The algorithm tuned for high precision found in this dataset 6,306 gender-related
microaggression candidates, 13,004 race-related microaggression candidates.

We find that while the model does detect actual instances of microaggression,
there is a noticeable amount of false positive instances. These tweets discuss race or
gender in some manner. However, they do not necessarily contain microaggressions
towards these groups. While the model does learn to detect discussions of these top-
ics, it seems to sometimes confuse these discussions with microaggressions towards
the aforementioned groups. Some examples follow, paraphrased to avoid tracking the
original messages.

1. Saying "Arrested Development isn’t funny" in an office full of women just to feel
something

2. “Men have moustaches, women have oversized bracelets”

The humorous attempts in this tweets hinge on gender stereotypes, and therefore
in some contexts it could be perceived as offensive by some recipients. The high relat-
edness in the word embedding space between some words (moustaches and bracelets)
and gender-related seed words (men and women) triggers the detection algorithm.

The automatic detection of racial microaggressions “in the wild” is more challeng-
ing than gender-based ones, according to our manual exploration of this automatically
labeled dataset. This may be due to the difficulty of crafting a list of seed words that
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is sufficiently race-related, but at the same time avoids generating too many false pos-
itives. We indeed found many of them, mainly due to named entities and multi-word
expressions such as “White House”, or simply because of the polysemy of color words,
e.g. “black” and “white”. We, however, still found instances of messages containing
different extent of racial stereotyping, as indicated in the following examples:

3. “why are you being so dramatic? just say I’m not originally arab, you don’t have to fight
about it”

4. “I will need to explain that to the chinese old lady who works at my school’s
administrative office”

In summary, running the unsupervised microaggression detection algorithm on un-
seen data seems to represent a promising intermediate step towards the semi-automatic
creation of language resources for this phenomenon. While the accuracy is not ideal, and
lists of seed words have to be handcrafted carefully in order to avoid false positives,
these drawbacks are balanced by the fairly cheap computational cost and the ease of
application in a multilingual scenario.

6. Prompt-based Classification of Microaggressions

One of the advantages of the method we propose in this paper is that, being unsu-
pervised, it allows us to perform microaggression classification in a zero-shot fashion.
Prompt-based learning (Liu et al. 2023) is a recent paradigm which gained enormous trac-
tion in the NLP community, applied, among other tasks, to zero-shot classification. In
a nutshell, prompt-based classification makes use of large pre-trained language models
to map labels to handcrafted or automatically derived natural language expressions.
The plausibility of the instance to classify augmented with the prompt according to the
model determines the label, without the need for further training or fine-tuning.

As a final experiment on the microaggression benchmark we presented in this
paper, we compute the performance of a basic prompt-based method for classification.
We test two variants of prompts, one “objective” and one “subjective”. The objective
prompts have the form of the short sentence “This is [mask]” following the text of the
instance to classify. [mask] is replaced by offensive and ok, linked respectively to the labels
MA and not-MA. The subjective prompts work similarly, but the alternative template is
“I feel [mask]” and, in order to keep the syntax consistent, the fillers for the mask are
offended and ok. Table 5 summarizes the design of the prompts for this experiment.

Table 5
Objective and subjective prompts used for zero-shot microaggression classification.

Prompt type Label Prompt text
Objective MA This is offensive.
Objective non-MA This is ok.
Subjective MA I feel offended.
Subjective non-MA I feel ok.

The experiment is implemented with the OpenPrompt library for Python (Ding
et al. 2022). The pre-trained model prompted in this experiment is the
bert-base-uncased model based on BERT (Devlin et al. 2019). And the results
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Table 6
Results of the experiment of prompt-based classification on the Gender and Racial subset of
SelfMA, in terms of Precition (P), Recall (R), and F1-score (F1) on the positive class (MA), on the
negative class (not-MA), and their macro-average.

Target Prompt type Class Precision Recall F1-Score

Gender

Objective
not-MA .823 .627 .712
MA .556 .776 .648
macro avg. .680

Subjective
not-MA .839 .666 .743
MA .587 .788 .673
macro avg. .708

Race

Objective
not-MA .819 .624 .708
MA .540 .762 .632
macro avg. .670

Subjective
not-MA .817 .642 .719
MA .549 .753 .635
macro avg. .677

are shown in Table 6. The first observation we can draw from the results is that the
subjective prompts are consistently better at predicting the correct microaggression
label. While we did not systematically test a large variety of variations of prompts, this
result matches the intuition that microaggression detection is a subjective task, whose
perception is dependant on the recipient’s perspective.

Comparing the results of the prompt-based classification with the results of the
main experiment (Table 2), we see a generally comparable performance. On the gender
subset, the prompt-based classification is actually slightly better in terms of macro-
averaged F1-score, although the performance on the positive class (arguably more
useful in a detection task) is lower. On the race subset, the classification performance
is lower, although not by a large margin. Considering that we only tested fixed, hand-
crafted prompts without further tuning and optimization, the results of this experiment
indicate a promising application of prompt-based learning to the task of microaggres-
sion detection. On the other hand, the main unsupervised method presented in this
paper retains characteristics of transparency and interpretability that are difficult to
replicate with the prompt-based approach.

7. Conclusion and Future Work

In this paper we introduce a novel algorithm that exploits the existing bias in pre-trained
word embeddings to detect subtly abusive language phenomena such as microagres-
sions. While supervised methods of detection in the field of natural language processing
are plentiful, these methods are only viable for languages and topics with available
labeled datasets. That is however not the case for many languages. As a result, the
unsupervised method of detection introduced in this study could help address the need
for the moderation of microaggressions in languages other than English. This is further
helped by the availability of multilingual word-embeddings as they would allow the
method to be used in any of the languages supported by the embedding.
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The method is unsupervised and only needs a small list of seed words. Considering
its simplicity, the results obtained from an experiment on a dataset of manually anno-
tated microaggressions are very promising. The experimental results are also compared
to a recent approach based on prompt-based learning, which obtains comparable but
lower performance. Further, the method is transparent, explicitly identifying the words
triggering a microaggression, and thus paving the way for explainable microaggression
detection.

Although the preliminary results are promising, an experiment on unseen data from
a different domain shows that there is leeway for improvement. Given that we are look-
ing at the explicit words used in each message, our method is not sensitive to implicit
expressions like “you people" or “your kind", often occurring in microaggressions. We
would have to add further steps to our algorithm to catch expressions like these.

Polysemy is another known issue, e.g., in words like “black" and “white" whose re-
latedness to certain identified trigger words could not necessarily be due to race. While
a careful composition of the seed word lists helps to minimize this issue, a systematic
approach to polysemy would certainly be desirable. The seed word list may also be
expanded, either manually or exploiting existing lexicons such as HurtLex (Bassignana,
Basile, and Patti 2018) for offensive terms (including stereotypes for several categories
of individuals) or specialized lists of identity-related terms3.

In future work, we plan on improving our model to account for lexical ambiguity,
and the complexity derived from the interference between pragmatic phenomena and
aggression, e.g., in humorous and ironic messages, following the intuition in recent lit-
erature (Frenda 2018) about the interconnection between irony or sarcasm and abusive
language online. Our current plan is to apply the algorithm presented in this paper to
bootstrap the creation of a multilingual resource of online verbal microaggressions and
release it to the research community.

Acknowledgements

This work of Valerio Basile is partially funded by Compagnia di San Paolo - Bando ex-
post 2020 - “Toxic Language Understanding in Online Communication - BREAKhate-
DOWN”.

References
Ali, Omar, Nancy Scheidt, Alexander Gegov, Ella Haig, Mo Adda, and Benjamin Aziz. 2020.

Automated detection of racial microaggressions using machine learning. In 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), pages 2477–2484, Canberra, Australia,
December 1–4. IEEE.

Bassignana, Elisa, Valerio Basile, and Viviana Patti. 2018. Hurtlex: A multilingual lexicon of
words to hurt. In 5th Italian Conference on Computational Linguistics, CLiC-it 2018, volume 2253,
pages 1–6, Torino, Italy, December 10–12. CEUR-WS.

Bhardwaj, Rishabh, Navonil Majumder, and Soujanya Poria. 2020. Investigating gender bias in
bert. Cognitive Computation, 13:1008–1018.

Bolukbasi, Tolga, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. 2016. Man
is to computer programmer as woman is to homemaker? debiasing word embeddings. In
Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16,
pages 4356–4364, Barcelona, Spain, December 5–10. Curran Associates Inc.

3 See for instance this compendium of LGBTQIA+ terminology: https://www.umass.edu/
stonewall/sites/default/files/documents/allyship_term_handout.pdf

36



Ògúnrè.mí et al. Leveraging Bias in Pre-trained WEs for Unsupe. Microaggression Detection

Breitfeller, Luke, Emily Ahn, David Jurgens, and Yulia Tsvetkov. 2019. Finding microaggressions
in the wild: A case for locating elusive phenomena in social media posts. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1664–1674, Hong
Kong, China, November 3–7. Association for Computational Linguistics.

Caselli, Tommaso, Valerio Basile, Jelena Mitrović, and Michael Granitzer. 2021. HateBERT:
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