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Garbage In, Flowers Out: Noisy Training Data
Help Generative Models at Test Time

Alberto Testoni⇤
Università di Trento, Trento

Raffaella Bernardi⇤⇤
Università di Trento, Rovereto

Despite important progress, conversational systems often generate dialogues that sound un-
natural to humans. We conjecture that the reason lies in the different training and testing
conditions: agents are trained in a controlled “lab” setting but tested in the “wild”. During
training, they learn to utter a sentence given the ground-truth dialogue history generated by
human annotators. On the other hand, during testing, the agents must interact with each other,
and hence deal with noisy data. We propose to fill this gap between the training and testing
environments by training the model with mixed batches containing both samples of human and
machine-generated dialogues. We assess the validity of the proposed method on GuessWhat?!, a
visual referential game. We show that our method improves the linguistic quality of the generated
dialogues, and it leads to higher accuracy of the guessing task; simple perturbations of the
ground-truth dialogue history that mimic machine-generated data do not account for a similar
improvement. Finally, we run a human evaluation experiment on a sample of machine-machine
dialogues to complement the quantitative analysis. This experiment shows that also human
annotators successfully exploit dialogues generated by a model trained with mixed batches to
solve the task. Hence, the mixed-batch training does not cause a language drift. Moreover, we
find that the new training regime allows human annotators to be significantly more confident
when selecting the target object, showing that the generated dialogues are informative.

1. Introduction

Recent years have witnessed important progress in developing conversational agents,
thanks to the introduction of the encoder-decoder framework (Sutskever, Vinyals, and
Le 2014). This framework, in fact, allows learning directly from raw data for both natural
language understanding and generation tasks. Promising results were obtained both
for chit-chat (Vinyals and Le 2015) and task-oriented dialogues (Lewis et al. 2017). The
framework has been further extended to develop agents that can communicate about
a visual content using natural language (de Vries et al. 2017; Mostafazadeh et al. 2017;
Das et al. 2017a). It is not easy to evaluate the performance of dialogue systems, but
one crucial aspect is the quality of the generated dialogue. These systems must in fact
produce a dialogue that sounds natural to humans in order to be employed in real-
world scenarios. Although there is not a general agreement on what makes a machine-
generated text sound natural, some features can be easily identified: for instance, natural
language respects syntactic rules and semantic constraints, it is coherent, it contains
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Figure 1
The two-step training method of the C Bot: two Bots, A and B, are trained independently to
reproduce human dialogues; then they play together to generate new dialogues (step 1). In step 2
Bot C is trained on mixed batches of human and machine-generated data (by A and B in step 1).

words with different frequency distribution that, crucially, are informative for the con-
veyed message, and it does not have repetitions, both at token and sentence level.

Unfortunately, even state-of-the-art systems often generate dialogues that sound
unnatural to humans, in particular due to the large number of repetitions appearing
in the generated output. We conjecture that part of the problem is due to the train-
ing paradigm adopted by most of the systems. In the Supervised Learning training
paradigm, the utterances generated by the models during training are used only to
compute a Log Likelihood loss function with the gold-standard human dialogues and
they are then thrown away. In a multi-turn dialogue setting, for instance, the follow-
up utterance is always generated starting from the human dialogue, and not from
the previously generated output. This procedure resembles a controlled “laboratory
setting”, where the agents are always exposed to “clean” human data at training time.
Crucially, when tested, the agents are instead left alone “in the wild”, without any
human supervision. They have to “survive” in a new environment by exploiting the
skills learned in the controlled lab setting and by interacting with each other.

Agents trained in a Reinforcement Learning fashion (Sutton and Barto 1998), on the
other hand, are trained “in the wild" by maximizing a reward function based on the task
success of the agent, at the cost of a significant increase in computational complexity.
Agents trained according to this paradigm generate many repetitions and the quality of
the dialogue degrades. This issue is mildly solved by the Cooperative Learning training
(Shekhar et al. 2019b), but still, several repetitions occur in the dialogues, making them
sound unnatural.

In this paper, we propose a simple but effective method to adjust the training envi-
ronment so that it becomes more similar to the testing one (see Figure 1). In particular,
we propose to replace part of the human training data with dialogues generated by
conversational agents talking to each other (Step 1 in Figure 1); these dialogues are
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“noisy", since they may contain repetitions, a limited vocabulary etc. We then propose to
train a new instance of the same conversational agent on this new training set (“mixed
batches", Step 2). The model is now trained “out of the lab" since the data it is exposed to
are less controlled and they get the model used to live in an environment more similar
to the one it will encounter during testing.

We assessed the validity of the proposed method on a referential visual dialogue
game, GuessWhat?! (de Vries et al. 2017). We found that the model trained according
to our method outperforms the one trained only on human data with respect both to
the accuracy in the guessing game and the linguistic quality of the generated dialogues,
according to some surface-level linguistic metrics. In particular, the number of games
with repeated questions drops significantly.

On a surface level, generated dialogues are mainly characterized by a high number
of repetitions and a certain frequency of wrong answers coming from the Oracle agent,
as we can see from the mixed batches sample dialogues illustrated in Figure 2. We
checked the effect of these two features in isolation on ground-truth human dialogues
by manually injecting them into the training set containing only human dialogues. We
found that neither altering ground-truth answers nor injecting repetitions lead to an
improvement at decoding time on the test set. We thus conclude that there exist more
fine-grained features in the structure of machine-generated dialogues that lead to the
improvement reported in this paper.1

2. Related Work

The need of going beyond the task success metric has been highlighted in Shekhar
et al. (2019b), where the authors compare the quality of dialogues generated by their
model against other state-of-the-art questioner models using some linguistic metrics.
One striking feature of the dialogues generated by these models is the large number of
dialogues containing repeated questions, while the ground-truth dialogues used to train
the model (collected with human annotators) do not contain repetitions. In Shekhar
et al. (2019a) the authors enrich the model proposed in Shekhar et al. (2019b) with a
module that decides when the agent has gathered enough information and is ready to
guess the target object. This approach is effective in reducing repetitions but, crucially,
the task accuracy of the game decreases.

Murahari et al. (2019) propose a Questioner model for the GuessWhich task (Das
et al. 2017b) that specifically aims to improve the diversity of generated dialogues by
adding a new loss function during training: the authors propose a simple auxiliary loss
that penalizes similar dialogue state embeddings in consecutive turns. Although this
technique reduces the number of repeated questions compared to the baseline model,
there is still a large number of repetitions in the output. Compared to these methods,
our method does not require designing ad-hoc loss functions or plugging additional
modules in the network.

The problem of generating repetitions affects not only dialogue systems, but instead
it is a general property of current decoding strategies. Holtzman et al. (2020) found
that decoding strategies that optimize for an output with high probability, such as
the widely used beam and greedy search decoding, lead to a linguistic output that is

1 This paper is an extended version of Testoni and Bernardi (2020). We extended the previous work by
investigating the role of specific features of machine-generated dialogues (Experiment 2 - Section 6.2) and
by running a human evaluation experiment (Experiment 3 - Section 6.3).
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Figure 2
GuessWhat?! sample dialogues. Mixed batches consist of human-generated (left side) and
machine-generated dialogues (right side, generated by GDSE-SL as in Shekhar et al., 2019). The
yellow box highlights the target entity that the Questioner has to guess by asking binary
questions to the Oracle. Both humans and conversational agents have to guess the target object
only at the end of the dialogue. Note that the machine-generated dialogues on the right contain
repetitions on the Questioner side, and wrong answers coming from the Oracle (both in italic).

generally banal, incoherent, and highly repetitive. Although language models generally
assign high probabilities to well-formed text, the highest scores for longer texts are often
repetitive and incoherent. To address this issue, the authors in Holtzman et al. (2020)
propose a new decoding strategy that shows promising results, Nucleus Sampling.
Starting from a probability distribution over all candidate tokens in the vocabulary, this
technique samples the next token from the set of candidates defined as the top-p subset
of the cumulative probability mass. Recently, Testoni and Bernardi (2021b) propose a
beam-search re-ranking strategy to promote the generation of more effective questions
throughout the dialogue. In this paper, we focus on the effect of different training sets
using the same decoding strategy.

In a concurrent work, Suglia et al. (2021) propose a new training paradigm called
Self-play via Iterated Experience Learning (SPIEL), in which the Questioner agent learns
the task from games previously generated by other instances of the same Questioner
architecture. The authors investigate to what extent the representations learned while
playing guessing games can be transferred to other downstream tasks, such as VQA
(Antol et al. 2015). Our approach is computationally simpler than the SPIEL technique:
we train the same model in a Supervised Learning fashion using different training sets
and we focus on the same task for all our experiments and training procedure.

3. Task and Models

Task. The GuessWhat?! game (de Vries et al. 2017) is a cooperative two-player game
based on a referential communication task where two players collaborate to identify a
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Figure 3
The image illustrates the follow-up question generation task investigated in this paper. Given an
image and a dialogue history, the task consists in generating a follow-up question to identify the
target in the image. During training, the loss function is computed by comparing the output of
the QGen module with the ground-truth follow-up question: this question can be
human-generated from the original GuessWhat?! training set (left), or machine-generated, i.e.,
generated by other instances of Questioner and Oracle agents interacting one with the other
(right), as a result of Step 1 illustrated in Image 1).

referent object in an image. This setting has been extensively used in human-human
collaborative dialogue (Clark 1996; Yule 2013). GuessWhat?! is an asymmetric game
involving two human participants who see a real-world image containing multiple
objects from the MSCOCO dataset (Lin et al. 2014). One of the participants (the Oracle)
is secretly assigned a target object within the image and the other participant (the
Questioner agent) has to guess the target by asking binary (Yes/No) questions to the
Oracle.

Models. We use the Visually-Grounded State Encoder (GDSE) model of Shekhar et al.
(2019b), i.e. a Questioner agent for the GuessWhat?! game. We consider the version of
GDSE trained in a supervised learning fashion (GDSE-SL). This model uses a visually
grounded dialogue state that takes the visual features of the input image and each
question-answer pair in the dialogue history to create a shared representation used
both for generating a follow-up question (QGen module) and guessing the target object
(Guesser module) in a multi-task learning scenario. More specifically, the visual features
are extracted with a ResNet-152 network (He et al. 2016) and the dialogue history is
encoded with an LSTM network (Hochreiter and Schmidhuber 1997). The full dialogue
history consists of the concatenation of the individual dialogue turns, and each turn is
composed of a question-answer pair. Since QGen faces a harder task and thus requires
more training iterations, the authors made the learning schedule task-dependent. They
called this setup modulo-n training, where n specifies after how many epochs of QGen
training the Guesser component is updated together with QGen. The QGen component
is optimized with the Log Likelihood of the training dialogues (as illustrated in Figure
3), and the Guesser computes a score for each candidate object by performing the dot
product between visually grounded dialogue state and each object representation. As
standard practice, the dialogues generated by the QGen are used only to compute the
loss function, and the Guesser is trained by receiving human dialogues. At test time,
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instead, the model generates a fixed number of questions (5 questions in our work)
and the answers are obtained with the baseline Oracle agent presented in de Vries et
al. (2017). Please refer to Shekhar et al. (2019b) for any additional detail on the model
architecture and the training paradigm.

4. Metrics

Similarly to Testoni and Bernardi (2021a), the first metric we considered is the simple
task accuracy (ACC) of the Questioner agent in guessing the target object among the
candidates. We use four metrics to evaluate the quality of the generated dialogues.

r Games with repeated questions (GRQ), which measures the percentage of
games with at least one repeated question verbatim.r Mutual Overlap (MO), which represents the average of the BLEU-4 score
obtained by comparing each question with the other questions within the
same dialogue.r Global Recall (GR), which measures the overall percentage of learnable
words (i.e. words in the vocabulary) that the models recall (use) while
generating new dialogues.r Novel Questions (NQ), computed as the average number of questions in a
generated dialogue that were not seen during training (compared via
string matching).

The Mutual Overlap and Novel Questions metrics are taken from Murahari et al.,
(2019), while the Global Recall metric is taken from van Miltenburg et al., (2018). We
acknowledge that these metrics do not capture the whole spectrum of the features that
make a machine-generated text sound natural. However, GRQ, MO, and GR capture
the most common weakness of neural generative models, namely the presence of
repetitions (both token-level and sentence-level and reduced lexical variety). Therefore,
we believe that these metrics represent a good proxy of the quality of the generated
dialogues for the purpose of our study. The last metric, NQ, shed light on whether
models simply learn to replicate human utterances or whether they are able to generate
questions compositionally/creatively.

Finally, we complete the analysis with a human-based experiment by asking sub-
jects to: (a) rate the grammaticality of the machine-generated dialogues, (b) select the
target they describe, and (c) state their confidence when selecting the target. If humans
find the dialogues grammatically sound and they are able to select the correct target,
there is no language drift in place; if humans are highly confident of their choice, the
dialogues are highly informative.

5. Datasets

We are interested in studying how modifying part of the human data in the training set
affects the linguistic output and the model’s accuracy on the GuessWhat?! game at test
time. More specifically, we aim at building a training set in which part of the dialogues
collected with human annotators are replaced with dialogues generated by the GDSE-
SL questioner model while playing with the baseline Oracle model on the same games
being replaced, i.e., the final training set size is always the same. In this way, we build
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Table 1
Statistics of training sets built with different proportions of human machine-generated
dialogues. Human data (100-0) vs. Mixed Batches (75-25, 50-50) vs. Fully Generated data (0-100).
Voc size: size of the vocabulary used. GRQ: % games with at least one repeated question
verbatim. MO: Mutual Overlap. Refer to Section 4 for additional details on the metrics.

% Human
Dialogues

% Generated
Dialogues

Generated Dial.
Length Voc size MO# GRQ#

100 0 variable 10469 0.05 0
75 25 fixed 4642 0.07 2.9
75 25 variable 4646 0.07 2.6
50 50 fixed 4391 0.08 5.4
50 50 variable 4396 0.07 4.7
0 100 fixed 2586 0.10 10.4
0 100 variable 2680 0.10 10.6

a training set containing dialogues that are more similar to the ones the model will
generate at test time while playing with the Oracle.

Human data. The GuessWhat?! dataset was collected via Amazon Mechanical Turk by de
Vries et al. (2017). The task is described in detail in Section 3. The training set contains
about 108K dialogues and the validation and test set 23K each. Dialogues contain on
average 5.2 turns, i.e, question-answer pairs exchanged between a Questioner and an
Oracle. The images used in GuessWhat?! are taken from the MS-COCO dataset (Lin
et al. 2014). Each image contains at least three and at most twenty objects. More than
ten thousand people in total participated in the dataset collection procedure. Human
annotators were instructed to ask only binary yes/no questions to the Oracle, and they
could stop asking questions at any time, so the length of the dialogues is not fixed.
Humans used a vocabulary of 17657 words to play GuessWhat?!: 10469 of these words
appear at least three times, and thus make up the vocabulary given to the models.
For our experiments, we considered only those games in which humans succeeded in
identifying the target object in less than 20 dialogue turns, following a common practice
from previous work.

Mixed Batches. We let the GDSE-SL model play with the baseline Oracle on the same
games of the human training dataset. This produces automatically generated data for
the whole training set. The model uses less than 3000 words out of a vocabulary of more
than 10000 words. We built new training sets according to two criteria: the proportion of
human and machine-generated data (50%-50% or 75%-25% respectively) and the length
of the generated dialogue. Either we always keep a fixed dialogue length (5 turns, as
the average length in the dataset) or we take the same number of turns that the human
Questioner used while playing the game we are replacing.

Table 1 reports some statics of different training sets. Human dialogues have a
very low mutual overlap and a much larger vocabulary than both the generated (100-0
setting, where the first number refers to the percentage of human-generated dialogues
and the second one to the machine-generated percentage) and mixed batches datasets
(50-50, 75-25). Looking at the number of games with at least one repeated question in
the training set (GRQ column in Table 1), it can be observed that human annotators
never produce dialogues with repetitions. The 75-25 dataset configuration contains less
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than 3% of dialogues with repeated questions and this percentage rises to around 5%
for the 50-50 configuration and to around 10% for the machine-generated dialogues (0-
100). Looking at the vocabulary size, the human dataset (100-0) contains around ten
thousand unique words, the mixed batches datasets (50-50, 75-25) around 4500 words,
and the generated dialogues (0-100) approximately 2500 words.

Table 2
Experiment 1. Test Set 5Q setting. GDSE-SL results on several training sets. At test time, the
model generates 5 questions and then it guesses. Length “fixed": 5-turns dialogues. Length
“variable": same turns human annotators used for that game. ACC: accuracy. GRQ: % games
with at least one repeated question. MO: Mutual Overlap. NQ: Novel Questions. GR: Global
Recall. ": higher is better. #: lower is better. The difference in accuracy between the 100-0 setting
and the other ones are all statistically significant, except for the one marked with *.

% Human
Dialogues

% Machine
Dialogues

Generated
Dial. Length ACC" GRQ# MO# NQ" GR"

100 0 variable 46.3 36.8 0.27 0.53 20.6
75 25 fixed 47.9 24.0 0.20 0.43 20.2
75 25 variable 47.5 26.6 0.21 0.41 19.4
50 50 fixed 48.1 22.5 0.18 0.37 21.2
50 50 variable 47.0* 21.0 0.18 0.42 21.1

6. Experiments and Results

In the following, we report the results of three experiments aiming to understand how
the training conditions affect accuracy and dialogue quality.

6.1 Experiment 1

In this first experiment, we evaluate models against the metrics described in Section 4
and compare the questioners whose training data differ with respect to the proportion
of machine and human-generated dialogues.

6.1.1 Implementation Details
In order to obtain a dataset of machine-generated data (Step 1 in Figure 1), we trained
the GDSE-SL model for 100 epochs as described in Shekhar et al. (2019b). At the end of
the training, we used GDSE to play the game with the Oracle on the whole training set,
saving all the dialogues. We generate these dialogues with the model trained for all the
100 epochs since it generates fewer repetitions, although it is not the best-performing
on the validation set. The dialogues generated by GDSE while playing with the Oracle
are noisy: they may contain duplicated questions, wrong answers, etc. See Figure 2 for
an example of human and machine-generated dialogues for the same game. We design
different training sets as described in Section 5 and train the GDSE-SL model on these
datasets (Step 2 in Figure 1). We scrutinize the effect of training on different sets using
the metrics described in Section 4 by letting the model generate new dialogues on the
test set while playing with the Oracle.
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6.1.2 Results
To have an overall comparison of the various settings, we computed the harmonic mean
of all the metrics described above – after normalization and inverting the ’lower is bet-
ter’ metrics. The best balance is obtained with the 50-50 variable-length configuration.
Below we zoom into the details of this coarse evaluation so as to highlight how the
behaviour of the model changes across the settings.

Table 2 reports the results of the GDSE model trained on different training sets. By
looking at the results on the test set, we can see how even a small number of machine-
generated dialogues affects the generation phase at test time, when the model generates
5-turns dialogues and, at the end of the game, it guesses the target object. First of all, it
can be noticed that the accuracy of GDSE-SL trained on the new datasets outperforms
the one trained on the original training set: in particular, the accuracy of GDSE trained
on 50% human dialogues and 50% 5-turns generated dialogues is almost 2% higher (in
absolute terms) than the model trained only on human dialogues. The model seems
to benefit from being exposed to noisy data at training time to better perform in the
guessing game using the dialogues generated by the model itself while playing with
the Oracle. We computed the McNemar’s significance test comparing the accuracy of
each setting with the 100-0 one: all the differences are statistically significant, with a
significance level of 0.05, with the only exception of the 50-50 variable-length training.

The linguistic analysis of the dialogues generated on the test set reveals that the
models trained on “mixed” batches produce better dialogues according to the metrics
described in Section 4. In particular, considering the best-performing model on the test
set, the percentage of games with repeated questions drops by 14.3% in absolute terms
and the mutual overlap score by 0.09. The percentage of vocabulary used (global recall),
on the other hand, remains stable. Interestingly, the only metric that seems to suffer
from the model being trained on mixed datasets is the number of novel questions: being
trained on noisy data does not seem to improve the “creativity" of the model, measured
as the ability to generate new questions compared to ones seen at training time. The
impact of the training data on the decoder’s creativity and hence on the acquisition of
human-like language generation ability deserves further investigation. However, it is
out of the scope of our main research question, which instead focuses on understanding
the quality of the generated dialogues rather than the creativity of the questioner.

Overall, our results show an interesting phenomenon: replacing part of the Guess-
What?! training set with machine-generated noisy dialogues, and training the GDSE-SL
questioner model on this new dataset, is found to improve both the accuracy of the
guessing game and the linguistic quality of the generated dialogues.

6.2 Experiment 2

Human dialogues and machine-generated ones have two easy-to-spot differences: the
latter contain repetitions and the answers by the Oracle are not always correct (as
discussed above and illustrated by Figure 2), while this is not the case for human
dialogues. In this experiment, we aim to exclude the possibility that the results we
obtained above are due to these two factors in isolation.

6.2.1 Implementational Details
In the following, we investigate more in detail the effect of the two surface-level features
of machine-generated dialogues that are easier to inject in the training data: repetitions
and wrong answers coming from the Oracle. We check whether one of these two
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features alone accounts for the performance improvement described in the previous
Section. To isolate their effect, we took the GuessWhat?! training set containing only
ground-truth human-generated dialogues and we randomly swap the answers in the
dialogue history or, alternatively, repeat one random question in the dialogue history.
Considering that: the accuracy of the Oracle agent in answering questions is around
80%, and that the datasets used in the previous experiment contain on average 2.6%
to 5.4% of games with repeated questions, we inject repetitions/wrong answers in the
training set with a frequency of 5% or 20%.

Table 3
Experiment 2. Test-set results of GDSE-SL using training sets containing ground-truth dialogues
with swapped answers or repetitions of questions in the dialogue history. The results are
compared with Experiment 1 (Mixed Batches). ACC: accuracy. GRQ: % games with at least one
repeated question. MO: Mutual Overlap. NQ: Novel Questions. GR: Global Recall. ": higher is
better. #: lower is better.

ACC " GRQ # MO # NQ " GR "

Mixed Batches Configuration 100 - 0 46.3 36.8 0.27 0.53 20.6
50 - 50 48.1 22.5 0.18 0.37 21.2

% Swapped Answers 5 42.8 40.6 0.30 0.45 19.1
20 32.1 48.7 0.34 0.43 17.2

GRQ (Training Set) 5 46.3 43.4 0.32 0.49 18.5
20 44.0 65.2 0.43 0.37 18.4

6.2.2 Results
As we can see from Table 3 (top), swapping 5% or 20% of the answers in ground-
truth human dialogue from the training set does not lead to the improvement we
have presented in Section 6, but instead, it seriously degrades both the accuracy of the
guessing task and the quality of the generated dialogues. More specifically, the accuracy
drops by up to -14.2% compared to the model trained on the original GuessWhat?!
dataset, and the percentage of games with at least one repeated question increases up
to +11.9%.

Table 3 (bottom) shows the results of GDSE-SL when trained on a dataset of human
dialogues containing a variable percentage of games with one duplicated question in
the dialogue history. Compared to the dataset with swapped answers, in this case the
drop in accuracy is very limited (up to -2.3%). On the other hand, the percentage of
games with at least one repeated question at test time increases dramatically (up to
+28.4% compared to the model trained on a dataset without repetitions), thus none of
the parameters we consider improves.

Overall, these results demonstrate that the presence of repetitions or inconsistent
answers alone in the training data do not account for the high performance illustrated
in Section 6 using a training set composed of both human and machine-generated
dialogues. This means that there are other features in the dialogue structure of generated
dialogues that, when mixed with the human ground-truth data, create a training envi-
ronment that, being closer to the inference setting, leads to more natural and effective
dialogues.
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Figure 4
Human evaluation: subjects were given a machine-machine dialogue, an image, and the set of
candidates among which they add to select the target and express their confidence. If the
generated dialogue is informative the subject should be able to select the right target with high
confidence, if the dialogue is not informative even if the selected target is correct the confidence
should be low, as illustrated by the example on the left and on the right, respectively.

6.3 Experiment 3

The quantitative experiments above have shown that training the questioner with
mixed-batches helps the model perform better at test time both in terms of task accuracy
and in terms of the set of surface linguistics features we use as a proxy of dialogue
quality. It remains open the question of whether the dialogues still sound natural,
and hence would be suitable to interact with humans. To this end, we run a human-
based evaluation and aim to exclude that our training protocol causes language drift.
As claimed in Gauthier and Mordatch (2016), conversational agents must flexibly use
human language to coordinate both with other agents and with humans to accomplish
a goal.

6.3.1 Human Annotation Setup
We asked human annotators to read machine-generated dialogues and: 1. judge their
grammaticality (using a scale from 1 to 5), 2. select the target object from a list of
candidate objects, i.e., we asked human annotators to play the role of the Guesser
module, 3. express their confidence on a scale from 1 to 5, their confidence in selecting
the target object, where 5 means ’I am highly confident about my choice’ and 1 means ’My
target selection was a random guess’. We anticipate that all dialogues were evaluated as
perfectly grammatical regardless of the training procedure, thus we do not discuss these
results in the following.

We extracted 140 games from the GuessWhat validation set with fewer than 6
candidate objects in the image. For each game, we took the dialogue generated in
the 100-0 and in the 50-50 paradigm. We recruited 4 annotators who were instructed
about the GuessWhat task with some sample games2 Each annotator was assigned to 70
dialogues (35 for the 100-0 setting, and 35 for the 50-50 setting, with no overlap between

2 Subjects provided written informed consent about the data collection.
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the two sets). In this way, we obtained human annotation for 280 dialogues.3 Figure 4
shows two examples of the images provided to the annotators.

Table 4
Results of the human evaluation experiment. Human Accuracy refers to the accuracy of human
annotators in selecting the target object when reading machine-generated dialogues. Confidence
refers to the average confidence of the annotators when selecting the target on a scale from 1(low
confidence, random guess) to 5 (high confidence, steady selection).

Human Accuracy " Confidence "

Mixed Batches Configuration 100-0 66.43 3.51
50-50 71.43 3.81

6.3.2 Results
Table 4 shows the results of our human evaluation experiment. They clearly demon-
strate that the dialogues generated in the 50-50 setting do not show language drift.
Although the accuracy of human annotators in identifying the target is higher in the 50-
50 setting, the difference is not statistically significant according to a McNemar’s statical
test with a significance level of 0.05. Interestingly, human participants are significantly
more confident when selecting the target in the mixed batches setting according to a
paired t-test with a significance level of 0.05. These results show that the improvements
of the mixed batches training regime highlighted in Table 2 do not come at the cost of
generating dialogues that shift away from human ones. The dialogues results to be more
informative also for humans who benefit from this new training paradigm.

7. Conclusion

Despite impressive progress in developing proficient conversational agents, current
state-of-the-art systems produce dialogues that do not sound as natural as they should.
In particular, they contain a high number of repetitions. To address this issue, methods
presented so far in the literature implement new loss functions, or modify the models’
architecture. When applied to referential guessing games, these techniques have the
drawback of gaining little improvement, degrading the accuracy of the referential game,
or producing incoherent dialogues.

Our work presents a simple but effective method to improve the linguistic output
of conversational agents playing the GuessWhat?! game. Our idea starts from the ob-
servation that, in the Supervised Learning setting, models are trained in a “controlled”
environment, i.e. using clean human-generated data while at test/inference time they
are left “in the wild”, and they have to solve the task by interacting one with the
other without having access to ground-truth human-generated dialogues. Following
this observation, in this paper we modify the GuessWhat?! training by replacing part
of the dialogues produced by human annotators with machine-generated “noisy” dia-
logues, so that the training and testing conditions become more similar to each other.
We show that a state-of-the-art model benefits from being trained on this new “mixed”
dataset: being exposed to a small number of “noisy” dialogues at training time improves

3 We used the annotation tool available at this link to run the data collection:
https://www.makesense.ai/.
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the quality of the output without deteriorating its accuracy on the task. Our results
show an absolute improvement in the accuracy of +1.8% and a drop in the number
of dialogues containing duplicated questions of around -14%. We checked whether
artificially injecting repetitions or swapping answers in ground-truth training data
may lead to the same improvement, but we found this is not the case: more in-depth
features of the machine-generated dialogues’ structure make our “mixing” approach
effective. Finally, to check that the generated dialogues were indeed effective also for
human annotators and to rule out the hypothesis that language drift was behind the
improvements described above, we run a human-based evaluation on a sample of the
machine-machine dialogues. We found that human annotators not only successfully
guess the target when reading dialogues generated with the new training regime, but
they are also significantly more confident in their choice. We believe further work is
required to check the effectiveness of our approach on other tasks/datasets, and to
explore other kinds of perturbations on the input of generative neural dialogue systems.
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