
Volume 7, Number 1-2
june-december 2021

Special Issue

Computational Dialogue Modelling:
The Role of Pragmatics and Common Ground in Interaction

IJCoL
 Italian Journal Rivista Italiana
 of Computational Linguistics di Linguistica Computazionale

ccademia
university
press

aA

ISSN 2499-4553

editors in chief

Roberto Basili
Università degli Studi di Roma Tor Vergata
Simonetta Montemagni
Istituto di Linguistica Computazionale “Antonio Zampolli” - CNR

advisory board

Giuseppe Attardi
Università degli Studi di Pisa (Italy)
Nicoletta Calzolari
Istituto di Linguistica Computazionale “Antonio Zampolli” - CNR (Italy)
Nick Campbell
Trinity College Dublin (Ireland)
Piero Cosi
Istituto di Scienze e Tecnologie della Cognizione - CNR (Italy)
Giacomo Ferrari
Università degli Studi del Piemonte Orientale (Italy)
Eduard Hovy
Carnegie Mellon University (USA)
Paola Merlo
Université de Genève (Switzerland)
John Nerbonne
University of Groningen (The Netherlands)
Joakim Nivre
Uppsala University (Sweden)
Maria Teresa Pazienza
Università degli Studi di Roma Tor Vergata (Italy)
Hinrich Schütze
University of Munich (Germany)
Marc Steedman
University of Edinburgh (United Kingdom)
Oliviero Stock
Fondazione Bruno Kessler, Trento (Italy)
Jun-ichi Tsujii
Artificial Intelligence Research Center, Tokyo (Japan)

editorial board

Cristina Bosco
Università degli Studi di Torino (Italy)
Franco Cutugno
Università degli Studi di Napoli (Italy)
Felice Dell’Orletta
Istituto di Linguistica Computazionale “Antonio Zampolli” - CNR (Italy)
Rodolfo Delmonte
Università degli Studi di Venezia (Italy)
Marcello Federico
Fondazione Bruno Kessler, Trento (Italy)
Alessandro Lenci
Università degli Studi di Pisa (Italy)
Bernardo Magnini
Fondazione Bruno Kessler, Trento (Italy)
Johanna Monti
Università degli Studi di Sassari (Italy)
Alessandro Moschitti
Università degli Studi di Trento (Italy)
Roberto Navigli
Università degli Studi di Roma “La Sapienza” (Italy)
Malvina Nissim
University of Groningen (The Netherlands)
Roberto Pieraccini
Jibo, Inc., Redwood City, CA, and Boston, MA (USA)
Vito Pirrelli
Istituto di Linguistica Computazionale “Antonio Zampolli” - CNR (Italy)
Giorgio Satta
Università degli Studi di Padova (Italy)
Gianni Semeraro
Università degli Studi di Bari (Italy)
Carlo Strapparava
Fondazione Bruno Kessler, Trento (Italy)
Fabio Tamburini
Università degli Studi di Bologna (Italy)
Paola Velardi
Università degli Studi di Roma “La Sapienza” (Italy)
Guido Vetere
Centro Studi Avanzati IBM Italia (Italy)
Fabio Massimo Zanzotto
Università degli Studi di Roma Tor Vergata (Italy)

editorial office
Danilo Croce
Università degli Studi di Roma Tor Vergata
Sara Goggi
Istituto di Linguistica Computazionale “Antonio Zampolli” - CNR
Manuela Speranza
Fondazione Bruno Kessler, Trento

Registrazione presso il Tribunale di Trento n. 14/16 del 6 luglio 2016

Rivista Semestrale dell’Associazione Italiana di Linguistica Computazionale (AILC)
© 2021 Associazione Italiana di Linguistica Computazionale (AILC)

direttore responsabile
Michele Arnese

isbn 9791280136770

Accademia University Press
via Carlo Alberto 55
I-10123 Torino
info@aAccademia.it
www.aAccademia.it/IJCoL_7_1-2

ccademia
university
press

aA
Accademia University Press è un marchio registrato di proprietà
di LEXIS Compagnia Editoriale in Torino srl

AILC IDENTITY - CMYK

ww
w.
sa
rab

arc
en
a.c
om

Red

Green

C:100 M:0 Y:100 K:0

C:0 M:100 Y:100 K:0

(pick only the design elements)

Dark background version

One-color version

Color primary version

IJCoL Volume 7, Number 1-2
june-december 2021

Special Issue

Computational Dialogue Modelling:
The Role of Pragmatics and Common Ground in Interaction

Invited editors: Hendrik Buschmeier and Francesco Cutugno
co-editors: Maria Di Maro and Antonio Origlia

CONTENTS
Editorial Note
Francesco Cutugno, Hendrik Buschmeier 7

Knowledge Modelling for Establishment of Common Ground in Dialogue
Systems
Lina Varonina, Stefan Kopp 9

Pragmatic approach to construct a multimodal corpus: an Italian pilot corpus
Luca Lo Re 33

How are gestures used by politicians? A multimodal co-gesture analysis
Daniela Trotta, Raffaele Guarasci 45

Toward Data-Driven Collaborative Dialogue Systems: The JILDA Dataset
Irene Sucameli, Alessandro Lenci, Bernardo Magnini, Manuela Speranza e Maria Simi 67

Analysis of Empathic Dialogue in Actual Doctor-Patient Calls and Implications
for Design of Embodied Conversational Agents
Sana Salman, Deborah Richards 91

The Role of Moral Values in the Twitter Debate: a Corpus of Conversations
Marco Stranisci, Michele De Leonardis, Cristina Bosco, Viviana Patti 113

Computational Grounding: An Overview of Common Ground Applications
in Conversational Agents
Maria Di Maro 133

Cutting melted butter? Common Ground inconsistencies management in
dialogue systems using graph databases
Maria Di Maro, Antonio Origlia, Francesco Cutugno 157

Towards a linguistically grounded dialog model for chatbot design
Anna Dell’Acqua, Fabio Tamburini 191

Improving transfer-learning for Data-to-Text Generation via Preserving
High-Frequency Phrases and Fact-Checking
Ethan Joseph, Mei Si, Julian Liaonag 223

Cutting melted butter? Common Ground

inconsistencies management in dialogue

systems using graph databases

Maria Di Maro⇤

Università di Napoli ‘Federico II’
Antonio Origlia⇤⇤

Università di Napoli ‘Federico II’

Francesco Cutugno†

Università di Napoli ‘Federico II’

In this work, a spoken dialogue system architecture capable of dealing with Common Ground
inconsistencies is proposed. Specifically, attention will be drawn upon the Conflict Search Graph,
with insights on its ability to recognise problems and make them explicit via polar questions.
Appropriate question forms are, indeed, adopted for the occurring type of common ground con-
flict, based on previous experiments, which showed that providing automatic dialogue systems
with such grounding capabilities can lead to improved usability and naturalness. The described
system architecture is, thus, able to detect conflicts and to use argumentation-based pragmatic
strategies to signal them consistently with previous observations.

1. Introduction

Dialogue systems, also referred to as conversational agents, are nowadays in the spot-
light in different commercial, academic and industrial sectors: suffice to consider the
success and popularity of tools like Amazon Alexa and Google Home (López, Quesada,
and Guerrero 2017), or widespread in-car dialogue systems (Becker et al. 2006; Kousidis
et al. 2014). Conversational agents are computer systems capable of interacting with hu-
mans through verbal signals. They are one of the most currently investigated field of Ar-
tificial Intelligence, since the ability to communicate inferences and one’s understanding
by means of language is one possible way to manifest intelligence (Sperber and others
1994). While a shared opinion of how intelligence can be defined is far from being widely
accepted (Warner 2002), one possible definition is proposed in (Legg and Hutter 2007),
which define it, despite all the criticism, as “the capacity for knowledge, and knowledge
possessed.”. In this definition, one concept draws particular attention: ‘knowledge’,
as knowledge bases are a crucial aspect for dialogue systems to appear intelligent.
Concerning the approaches used in such systems, these appear to be distributed in a
continuum where we find, at the extremes, systems using deterministic rules to react to
specific signals (McGlashan et al. 1992), and end-to-end dialogue systems which do not
make any distinction in the abilities the system should perform at different levels, but
are rather trained with data from which tendencies are statistically extracted (Ritter,
Cherry, and Dolan 2010; Vinyals and Le 2015; Serban et al. 2016; Bordes, Boureau,

⇤ Interdepartmental Center for Advances in Robotic Surgery E-mail: maria.dimaro2@unina.it
⇤⇤ URBAN/ECO Research Center E-mail: antonio.origlia@unina.it
† URBAN/ECO Research Center E-mail: cutugno@unina.it

© 2021 Associazione Italiana di Linguistica Computazionale

Italian Journal of Computational Linguistics Volume 7, Number 1-2

and Weston 2016). In the middle, there are hybrid systems using either statistical or
deterministic approaches to implement different modules dedicated to the management
of specific strategies and tools. Overall, in the field of language understanding and
generation, the corpus-driven approach is becoming increasingly important to infer,
with the application of machine learning algorithms, knowledge and communicative
strategies (Serban et al. 2018). Nevertheless, beyond pattern recognition capabilities
provided by machine learning algorithms, decision making in dialogue management
still benefits from the design of appropriate knowledge representation, which supports
both the efficiency and the interpretability of a technological system.

Knowledge representation dedicated to dialogue management is very close to the
concept of Common Ground, that is mutual knowledge, beliefs, and assumptions, as
the foundation for mutual understanding in conversation (Clark and Brennan 1991).
Common ground, as Clark (Clark 2015) acknowledged, can be of four main types:
personal, local, communal and specialised. Personal Common Ground (PCG) is estab-
lished collecting information over time through communicative exchanges with an
interlocutor and it can be considered as a record of shared experiences with that person.
A part of PCG is Local Common Ground that is tied to a piece of information obtained
from a single exchange with an unknown or known interlocutor. According to Clark
(Clark 2015), information of this type can be, for instance, the opening hours for a shop,
train timetables, and so on. With Communal Common Ground (CCG), it is intended an
amount of information shared with people that belong to the same community, that
is to say, people that share general knowledge, knowledge about social background,
education (schools attended, levels of education attained), religion, nationality, and
language(s). Within a larger community, a smaller one can be found: Specialised Common
Ground pertains to those people that share particular areas of expertise about some
domain of knowledge, such as colleagues, friends, or acquaintances, and it is marked
by specialised vocabulary of that specific domain, such as medicine, law, and so on.
For the purposes of this work, only PCG and CCG are going to be considered, where
CCG defines the rules of the cooking domain, for which it is common knowledge
that, for instance, butter is an ingredient, and where PCG stores the given information
concerning the recipes steps.

This work aims at investigating the following research questions:

1. Is it possible to design a knowledge representation module hosting, at the
same time, both the CG and the dialogue state?

2. Is it possible to use CG inconsistencies detection as an
argumentation-based dialogue system metrics?

The general objective of this work is to investigate how inconsistencies in the
knowledge stored in the CG can be efficiently detected with as much detail as possible to
support error reporting in a dialogue system. Specifically, we propose the use of graph
databases as an integrated solution to dialogue state tracking, knowledge representa-
tion and conflict detection as a fundamental building block for dialogue systems with
argumentation capabilities.

The paper is organised as follows: in Section 2, we summarise the theories underly-
ing our approach and motivating the proposed system’s architecture, while in Section
3, we report similar previous works closely related to the one presented here. Section 4
describes the proposed system’s architecture and the materials used to test its conflict
detection capabilities. Section 5 describes how the graph structure representing the CCG

158

Di Maro et al. Cutting melted butter?

was assembled using freely available resources. Section 6 describes, instead, how the
PCG is built, as commands are issued from a simulated user, and how consistency
checks are performed, at each iteration, to verify that the PCG consistency is not
compromised by the last command. The same Section describes the procedure used
to extract inconsistency details after a conflict is detected. Lastly, Section 7 reports the
results obtained using simulated dialogues together with error analysis.

2. Background theory

As anticipated, dialogue systems are interactive devices. Interacting refers to actions
that have some effect on others. The mutual influence agents can have on one another
is built through communicative processes, both verbal and not verbal. On the other
hand, communicating means to transmit information. According to the Shannon-Weaver
model of communication, mostly applicable to machines’ interaction, communication
deals with the transmission of signals from one system to another, where the system
communicating can be of the same nature or not (Shannon 1948). According to this
model, the transmitter encodes a message which is sent through a channel to the
receiver who decodes it. The communication channel is also called noise because it
can be loaded with noise of different kind. Nevertheless, communication is more than
just transmitting information, as information must be processed in order to enable the
receiving agent to produce a coherent output. Moreover, as stated by Allwood (Allwood
2013), communication includes not only the sharing of information, but also of cognitive
content or understanding with varying degrees of awareness and intentionality. In fact,
A and B communicate if and only if A and B share a cognitive content as a result of
A influencing B0s perception, understanding and interpretation and vice versa. Despite
its little applicability in human conversation, Shannon and Weaver’s model is useful
to understand how communication works in terms of processes’ states. This model
can indeed be compared with the one described by Jakobson about the functions of
language (Jakobson 1956). According to the author, in fact, the elements interacting
in communication are i) the addresser, who sends a message to the addressee; ii) the
message, which is connected and interpretable because of the presence of a context it
can refer to; iii) a code, common to the addresser and addressee, used to codify the
message; iv) a contact, which is the physical channel and the psychological connection
between the addresser and the addressee, enabling both of them to enter and stay
in communication. To each item of the communication circuit corresponds a specific
language function.

Directly connected to communication is dialogue, seen as the prototypical form of
language use and communicative exchange (Bazzanella 1994, 2005). Dialogue is a com-
municative process which requires two or more interlocutors, who coherently transmit
pieces of information in one or more dialogue turns. The importance of focusing on
such topics reflects the need to bridge the gap in the study and development of dialogue
systems left by the lack of insights into the application of pragmatics to conversational
agents. Although pragmatics is the level of language analysis strongly depending on
dialogue, its computational application is mainly focused on the study and identifica-
tion of speech acts (Leech 2003). In more detail, in the field of pragmatics, in the last ten
years, research on Common Ground has seen a thriving impulse. Nevertheless, despite
the fact that Clarification Requests are one of the grounding tools used by interlocutors
while conversing, their study and application in dialogue systems have not yet seen a
boost. All in all, a more in-depth analysis of pragmatic phenomena related to Common
Ground construction and consistency checks in human-machine interaction, such as the

159

Italian Journal of Computational Linguistics Volume 7, Number 1-2

use of Clarification Requests, appears to be a missing spot in the research on dialogue
system, and whose necessity needs to be confirmed in terms of efficiency increase with
the support of the here presented study.

Clarification Requests are an important pragmatic device adopted to establish and
maintain successful communication (Clark 1996; Allwood 1995). Among the different
types of Clarification Requests, one class in used in specific contexts, namely when
Common Ground Inconsistencies occur. With Common Ground Inconsistencies we refer
to the incompatibility between the listener belief and the new evidence provided by
the speaker. In other words, given a domain D, we define a set of sequential actions
A as a number of different ai. Each ai is associated with a set of states Si composed
of verifiable pre-conditions spre and post-conditions spost. D is inconsistent when an
action ai exists, associated with its Si, where either spre and/or spost are incompatible
with respect to the S set belonging to another aj , as they cannot co-exist. When this
conflict takes place an inconsistency occurs. This conflict can depend on i) a spre which
is incompatible with the rules of the Communal Common Ground (i.e., cut the milk)
ii) the incompatibility of spre of the current a with spost resulting from a preceding a,
saved in the set of shared knowledge - the Personal Common Ground. Although both
Common Ground Inconsistencies can cause corrective feedback, only the second type
is linked to the adoption of Clarification Requests. As it will be described in the next
section, polar questions are particularly important in these conflicting scenarios, since
they clearly express the presuppositional stance of the listener when compared to other
types of questions.

As far as clarification in dialogue is concerned, the act of clarifying succeeds the
grounding request (CR) generated when facing understanding problems and consti-
tutes an argumentation act (Traum 1994, p. 28). Argumentation acts are defined as “se-
quences of core speech acts, with constraints on the timing and content” (Traum 1999), i.e., an
answer actually providing information asked for by the question. Concerning argumen-
tation, there is a solid tradition in Artificial Intelligence concerning argumentation based
inference starting with (Dung 1995), which formally described an abstract argumenta-
tion framework AF as a pair (AR, attacks) where AR represents a set of arguments
and attacks is a binary relation in AR x AR. Argumentation-based inference is a formal
method for a single entity to decide about the truth of an argument and, therefore, does
not consider the problems arising from dialogues among different agents.

Argumentation-based Dialogue (ABD) refers to the modelling of the verbal in-
teraction aimed at the resolution of conflicts of opinions via the adoption of specific
strategies. This field of study consists of a variety of different approaches and individual
systems, with few unifying accounts or general frameworks (Prakken 2017).

In ABD, information is distributed among different agents, who may or may not be
willing to share it at different points in time due to individual strategies and goals.
This poses a problem both from the point of view of communication protocols, to
ensure fairness and efficiency and from the point of view of behaviour. Adopting a
goal-oriented perspective, dialogues have been classified as (Walton 1984; Walton and
Krabbe 1995):

r Persuasion: aimed at solving a difference of opinion;r Negotiation: aimed at solving a conflict of interest by reaching a deal;r Information seeking: aimed at information exchange;

160

Di Maro et al. Cutting melted butter?

r Deliberation: aimed at reaching a decision or at establishing a course of
action;r Inquiry: aimed at growth of knowledge and agreement per se;r Quarrel: aimed at winning a verbal fight or a contest.

Among the types of ABD, we concentrate on deliberation dialogue. Specifically,
we consider the specific case of user-initiative dialogues where a human leader plans a
series of operations to be later performed by an automatic follower whose only task is to
check the consistency of the instructions sequence, very similarly to what happens, for
example, in the map task (Baker and Hazan 2011). An important aspect of deliberation
dialogue we focus on, in this paper, consists of the capability of the system to identify
possible inconsistencies and to signal them with proper explanations.

2.1 Conflict-related Correcting Feedback in Conversational Agents

Classic approaches to ABD adopt the same setting that has been successfully used for
argumentation based inference: that is, inference rules are derived to establish a course
of action that is deterministic given a system configuration. Structural relationships
among claims and various kinds of replies are established in a formal protocol dedicated
to establishing whether a speech act is legal or not. This allows to provide a formal
description of situations when a dialogue terminates or, in the case of competitive
settings, is won. Since persuasion is the most studied situation in ABDs, a typical
example of formal communication language is the one described in (Prakken 2005). In
this type of setting, a claim provided by an agent A is supported by data, constituting
an argument that can be explicitly put forward as a reply to a why move made by an
agent B, which explicitly requests the speaker to explain the reasons why a statement
should be accepted. Claims can be attacked by counter-arguments, which are other
claims aimed at proving previous statements as false. Conceding and retracting moves
respectively declare the acceptance of a statement or a change of attitude towards it,
from commitment to non-commitment. Note that this does not imply a change of belief,
as it is usually specified that the publicly declared position of an agent may not reflect
what the agent actually believes.

An interesting result is found in the framework of deliberation dialogues, when
collaboration is assumed on the task of finding an optimal solution to a problem for
which none of the involved agents has a solution, yet. In the case of a two-agents system
adhering strictly to the communication protocol, forming their claims on the basis
of their knowledge bases and adopting a collaborative attitude, (Black and Atkinson
2010) demonstrated that the agreed solution is always acceptable to both parties. The
usefulness of argumentation in dialogue systems designed for deliberation was, instead,
demonstrated in (Kok et al. 2010).

The problem that characterises ABD with respect to argumentation based inference
is the presence of different agents in the setting. This introduces multiple, not necessarily
aligned, knowledge bases and, possibly, different/conflicting goals in the pursuit of a
solution to a problem. There are attempts to deal with the partial knowledge each agent
has concerning the others’ goals and knowledge using rule-based systems: (Dunne and
Bench-Capon 2006) examines the consequences of having suspicions of hidden agenda in
the case of negotiation based dialogues while, in (Kok 2013), the strategic usefulness
of reinforcing an agent’s own claims versus the usefulness of undermining the other
agents’ claims is considered. These approaches, however, have been recently surpassed

161

Italian Journal of Computational Linguistics Volume 7, Number 1-2

by more flexible, probabilistic approaches, modelling opponents in terms of probability
distributions over their possible beliefs and goals and using these to compute the utility
of each legal dialogue move depending on their own goals and beliefs (e.g. (Hadjinikolis
et al. 2013; Rienstra, Thimm, and Oren 2013)). Moreover, recent work put forward the
need to model the degree or strength of an agent’s belief towards a statement, modelled
as the probability of the statement being true, rather that assuming it to either be or not
be true (Hunter and Thimm 2016, 2017).

In this context, polar questions can serve as an argumentation tool. They usually
encode in themselves not only a mere request but also presuppositions, agendas and
preferences. Furthermore, when the questioner is closer to a K+ position, the use of a
polar question can also implicate a disaffiliation. In this case, we refer to epistemically
biased questions. According to the literature, one way of expressing disaffiliation is
through the use of Reversed Polarity Questions, that are questions that convey bias
towards the opposite valence than the utterance (Koshik 2002, 2005). For example,
negative interrogatives can also function as positive assertions challenging the recipi-
ent’s position (Heritage 2002). Criticisms and challenges can also be expressed through
declaratives (i.e. You shouldn’t have done that), imperatives (i.e. Don’t do that to me again),
or exclamations (i.e. How dare you?), which are perceived more confrontational and
explicit and can be therefore face-threatening (Hayano 2013; Sidnell and Stivers 2012,
411). Among non-standard communications, conflicting representations (Huang 2017)
are listed as interactions taking place when a discrepancy between what is communi-
cated and what is believed by the agent occurs. In these scenarios, polar questions can,
therefore, serve as a knowledge challenging tool.

Different authors pointed out how either the original bias of the speaker or the
contextual evidence bias could influence the syntactic form of polar questions.

Original speaker bias. Belief or expectation of the speaker that p is true, based on his epistemic
state prior to the current situational context and conversational exchange (Ladd 1981, 166).

Contextual evidence bias. Expectation that p is true (possibly contradicting a prior belief of the
speaker) induced by evidence that has just become mutually available to the participants in the
current discourse situation (Buring and Gunlogson 2000, 7).

Following (Domaneschi, Romero, and Braun 2017), possible combinations of the
original bias of the speaker (where B(p) is positive, B(-) is neutral, and B(¬p) is
negative) and the contextual evidence (where E(p) is positive, E(-) is neutral, and E(¬p)
is negative) were investigated, in order to point out the influence they may have on the
choice of polar question forms. This contrast represents, indeed, the conflict existing
between the presupposed knowledge of the questioner and the one of the answerer.

The experiment illustrated in (Domaneschi, Romero, and Braun 2017; Di Maro,
Origlia, and Cutugno 2021) pointed out the importance speakers give to the syntactic
form with respect to the pragmatic needs. Results showed that the use of high negation
polar questions better suits the pragmatic need of referring to a specific type of conflict
between an original bias and an opposing contextual evidence. Namely, the conflict
is between a strong presupposition of the speaker and a piece of information stored
in the Personal Common Ground in a previous step of the interaction clashing with a
contextual evidence given by the interlocutor. The same principles can, therefore, be
applied when modelling human-machine dialogues. For this reason, even an apparently
marginal difference, like the use of a negated form against its positive one, can express
a specific speaker’s stance and have a strong impact on the conversation efficiency.

162

Di Maro et al. Cutting melted butter?

Corrective dialogues are an important negotiation phase to build a coherent CG
in the communication process. Human interlocutors always contribute with questions,
answers, and feedback (Beun and van Eijk 2004): these are typical of corrective dia-
logues, occurring when : i) the user notices an error in the system and corrects it; ii) the
user changes their mind; iii) the user’s beliefs are in contradiction with the system’s
beliefs and expectations. Among these cases, only the third one is characterised by
system initiative (Bousquet-Vernhettes, Privat, and Vigouroux 2003). For example, in
(Beun and van Eijk 2004), the authors focused on a particular communicative problem
related to conceptual discrepancies between a computer system and its user. In their
final report, the authors stated that, although feedback is now used in such systems,
there is still no accurate mathematical theory for natural communicative behaviours and
their computational model to human-machine interaction, especially as far as concep-
tual discrepancies are concerned. What is still missing is, therefore, a reference model
guiding the adoption of a specific type, content, and form of the feedback that has to be
generated in a particular situation (Beun and van Eijk 2004).

In this work, a type of corrective dialogue is investigated, in which the system has a
non-expert role and adjusts its grounded knowledge when conceptual discrepancies
occur because of an inaccuracy, which causes an inconsistency, in the sequence of
actions uttered by the user. Presenting a system architecture that includes the capability
of detecting inconsistencies and reporting them to the user using adequate linguistic
strategies is the goal of this work.

3. Related works

When pragmatics is applied to dialogue modelling, we talk about computational prag-
matics, especially as far as the development of dialogue systems is concerned. In fact,
computational pragmatics mostly deals with corpus data, context models, and algo-
rithms for context-dependent utterance generation and interpretation (Huang 2017,
p. 326). Nevertheless, conversational agents should be able not only to process local
but also global structures of dialogues (Airenti, Bara, and Colombetti 1993). Whereas
local structures are involved with linguistic rules (i.e., speech acts, turn-taking, etc.),
which can be derived from corpus analysis, global structures refer to the conversation
flow, that is the dialogue’s action plan and how this is mutually known by dialogue
participants (i.e., opening, closing, etc.). Cognitive pragmatics looks at these global
structures derived from behavioural games, which in turn derive from grounding pro-
cesses (Bara 1999). Different authors started including these processes in their dialogue
systems architectures, especially as far as evaluating and updating common ground
with their human partner, which is also the main topic of this work. For instance, Roque
and Traum (Roque and Traum 2009) have developed a dialogue system that tracks
grounded information in the previous conversation. As a consequence, the dialogue
system is capable of selecting its utterances using different types of evidence of the
user’s understanding (i.e., whether the dialogue system has just submitted material or
the user has also acknowledged it, repeated it back, or even used it in a subsequent
utterance) (Müller, Paul, and Li 2021).

Using grounding strategies in conversational agents brought to interesting imple-
mentations. One aspect which has not yet been investigated is concerned with the
mechanisms of grounding between humans and dialogue systems. Experimental in-
vestigations have mostly studied how users evaluate the interaction, instead of studying
interaction mechanisms (Müller, Paul, and Li 2021, 3). For instance, Roque and Traum
(Roque and Traum 2009) performed a user study in which subjects interacted with

163

Italian Journal of Computational Linguistics Volume 7, Number 1-2

their system and rated how much they felt the system understood them, put effort into
understanding them, and gave appropriate responses. Conversely, what most studies
do not ask is how a specific dialogue principle, such as the use of a particular type
of request, is used by a system to affect user behaviours. Therefore, to learn more
about human-machine dialogue mechanisms, it is important to turn to more basic
experimental research (Müller, Paul, and Li 2021), like the one presented in this work.

The use of graph databases for dialogue systems, on the other hand, is also ac-
quiring importance. In (Pichl et al. 2020), for example, an RDF-based conversational
knowledge graph is used in the pipeline. Here, objective and subjective knowledge are
represented. The advantage of using a graph database, like the one that is presented in
this work, instead of an RDF structure, like the one used by the authors, lies in the fact
that such databases are optimised for path search operations (i.e., the path that links the
entity with a certain label to the action that caused the entity to get that specific label)
and that they perform their operations in a much faster way. Others, such as (Axelsson
and Skantze 2020), also adopt knowledge graphs, generated from Wikidata, connected
to a behavioural tree that guide the grounding process of the items in the graph via
feedback interpretation.

4. Methodology

In this Section, the system architecture proposed to implement Embodied Conversa-
tional Agents using graph databases as knowledge representation support to identify
conflicting instructions is presented. Also, the materials used come from a previous
experiment and were selected because they were found to be well balanced during the
calibration phase. In this work, we submit the semantic representations of human com-
mands, involved in the selected recipes, to the system to evaluate its conflict detection
capabilities.

4.1 System architecture

The system presented here is intended as one of the possible applications of the frame-
work FANTASIA by (Origlia et al. 2019), whose architecture is shown in Figure 11.
FANTASIA’s aim is to integrate different modules, such as a graph database, a dialogue
manager, a game engine, and a voice synthesis engine for the development of social
interactive systems. Integration efforts are, indeed, an important issue to overcome
when a research group, for instance, shares the same theoretical framework but needs
ad-hoc solutions for different applications. Approaches found in the literature to ad-
dress this issue typically concentrated on communication layers, to which different
actors in an interactive system must subscribe to exchange data. In such approaches,
developing low-level code is still necessary to implement the application. Contrary to
these, the high-level development languages provided by game engines, but also by
other specialised solutions, offer an important chance to simplify the process when
directly integrated in a proposed framework, as in FANTASIA.

The application of interest in this work is concerned with natural interaction. Spe-
cialised frameworks have dealt with this kind of interaction and focused mainly on vir-
tual human management. In these frameworks, when game engines are adopted, they

1 Figure 1 shows an improved version of the architecture of the one displayed in the reference paper
(Origlia et al. 2019)

164

Di Maro et al. Cutting melted butter?

Figure 1

The FANTASIA architecture. Data coming from multiple sources, like Linked Open Data, are
combined in a graph database, where further processing can be applied. Interaction
management for Embodied Conversational Agents can be implemented in the Unreal Engine 4,
also using third party AI services and multiple types of controllers.

have usually been used only as rendering modules. However, modern game engines
are interesting candidates to host most of the behavioural logic and realisation modules
in an integrated solution. In FANTASIA, as shown in Figure 1, a high industry-grade
game engine such as the Unreal Engine 4 (UE4) is (Sanders 2016) adopted to control
the virtual environment and an Embodied Conversational Agent. The engine manages
communication with the human user, but it is also used to integrate language processing
pipelines using informational data represented in graph format.

The knowledge base was represented in a graph database using Neo4j. Neo4j
(Webber and Robinson 2018) is an open source graph database manager that has been
developed over the last 16 years and applied to a high number of tasks related to data
representation. It can be deployed in server mode and queried over a specific port using
a standard HTTP or the dedicated Bolt protocol. It can also be embedded in Java applica-
tions through dedicated APIs. In Neo4j, nodes and relationships may be assigned labels
that describe the type of object they are associated with. Neo4j is characterised by high
scalability, ease of use and its proprietary query language, namely Cypher. Cypher is
designed to be a declarative language that highlights patterns’ structure using an SQL-
inspired ASCII-art syntax. The increasing importance of graph databases is also pointed
out in the Gartner Top 10 Trends in Data and Analytics for 2020 where graph analytics and
algorithms are considered important to improve AI and ML initiatives2. Furthermore,
The increasing importance of Neo4j is also demonstrated by the fact that this tool is
able to detect conflicts and to use argumentation strategies to signal them consistently

2 https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-in-data-and-analytics-for-2020/
[last consultation on 19th January 2021]

165

Italian Journal of Computational Linguistics Volume 7, Number 1-2

with previous observations. This means that such graphs can be employed not only for
rule-based reasoning but also for machine learning approaches.

Neo4j allows to combine data coming from different sources under a single, graph-
based representation; for instance, sources of information other than textual and Linked-
Open Data (LOD) can be integrated in the representation, like DBpedia and Wikidata,
of interest in this work. The knowledge hosted by the aforementioned database is cus-
tomisable according to the domain of application. In this work, the sources integrated in
this tool are FrameNet (Baker, Fillmore, and Lowe 1998) and Wikidata3. Domains are in-
deed described through the set of basic actions extracted from FrameNet. Each domain
element is, furthermore, represented with its characteristics retrieved from Wikidata.
Wikidata serves as a human and machine-readable source containing structured data.
The Wikidata project has become relevant, to the point that it is being employed as
a connecting resource for many different dataset (e.g. the Thesauri collected from the
Getty Research Institute, such as the Art & Architecture Thesaurus4 and the Library of
Congress5)).

The domain of interest chosen for this work is the cooking domain. Therefore,
all structure-related explanations will be framed in this conceptual area. Details on
the structure of the knowledge base, whose peculiarities are employed to search for
conflicts, are given in the next section. Using this domain, pragmatic-related reasoning
skills were implemented and tested, whose results are reported and discussed.

4.2 Materials

The materials used to test the conflict detection capabilities of the presented system ar-
chitecture consist of a set of 10 recipes, extracted from the Italian cooking recipes website
GialloZafferano6 and manually segmented into a series of steps, each corresponding to
a single action. Although, currently, automatic systems capable of executing such tasks
are only developed for research purposes7, it is reasonable to assume that most people
know the basics of cooking and can therefore participate to our experiments. Actions
and their involved parameters were annotated using FrameNet as a basis, so that each
action is an instance of a frame and involve entities assume the role of frame elements.
This way, steps identified in all recipes can be connected to a shared, standardised
structure. This is enriched by adding pre-conditions, namely boolean checks to be
performed on the PCG to verify its stability after accepting a new action, and post-
conditions, namely updates to the PCG after a new action is accepted.

To simulate the occurrence of conflicting situations, for whose resolution a consis-
tency recovery strategy had to be employed, an inconsistent action ax was inserted in
A. The inconsistency emerges when the pre-conditions of a later action are not verified
because of post-conditions applied after accepting ax. The conflicting inconsistency,
representing a positive bias versus negative evidence contrast, was determined by the
opposition of some aspects of ax and some aspects of the consecutive an. The goal of
the system, in this case, is to detect conflicts causing pre-conditions checks to fail and to
identify the cause of the inconsistency in any previous action declared in the sequence.
Actions causing conflicts, ax, are found at variable distance from the action where the

3 https://www.wikidata.org/wiki/Wikidata:Main_Page [last consultation on 19th January 2021]
4 https://www.getty.edu/research/tools/vocabularies/aat/ [last consultation on 19th January 2021]
5 https://www.loc.gov/librarians/controlled-vocabularies/ [last consultation on 19th January 2021]
6 www.giallozafferano.it/
7 http://www.rodyman.eu

166

Di Maro et al. Cutting melted butter?

Figure 2

Experiment structure

conflict actually emerges, an, so that no assumption is made about how far in the past
the conflict is rooted. Also, there are at least five actions between ax and an so that the
possibility that ax is found in human subjects’ short term memory, thus making the
conflict easier to detect, will be reduced.

To evaluate how realistic the selected recipes are, a preliminary experiment was
conducted to check if the chosen situations were either too easy or too difficult to
detect for a human subject. Using a series of slides (Appendix C), [s1, . . . , sn], for
each recipe, which visually represented the steps involved in the recipe, we elicited
spoken commands from a group of 36, gender balanced, subjects. While this was part
of another experiment focusing on polar question forms, it allowed us to verify that the
chosen sequences were understandable by human subjects, that it was possible for the
artificially constructed conflicts to be detected by human participants and that none of
the considered sequences was trivial. Regardless of the linguistic condition considered
in the experiment, once the presence of the conflict was reported, participants could
go back in the recipe in order to look for the conflict. The experiment, which made
use of slides, was constructed in a way that, once the subject requested to go back
after the prompt, the experimenter went instead forth, where the previous slides where
presented backwards, as shown in Figure 2. Here, the conflicting slide was substituted
with the correct one. This way, the identification of the conflict and the speaker’s self-
correction could be guided.

The goal of this experiment consisted of establishing whether a high negative polar
question was more informative than a positive polar question to help the interlocutor
to resolve a conflict.

A preliminary result of this experiment, presented in (Di Maro 2021), also relevant
for this work, is that no recipe included in the considered dataset contained a conflict
that was either too simple or too hard to identify. Table 1 shows that all conflicts
were found, by human subjects, at least one time while no conflict was systematically
detected. Given the results obtained during the calibration phase, in this work we used
the same materials.

In addition to these recipes, 10 more were collected and annotated after the preced-
ing dialogue modelling phase. This allowed to verify that the annotation process could

167

Italian Journal of Computational Linguistics Volume 7, Number 1-2

Table 1

Percentage of conflicts found per recipe

Recipe Code Conflict Found

Besciamella (BÃl’chamel) R01 66,67%
Carbonara R02 50%
Cestini ripieni (Oat yoghurt baskets) R03 33,33%
Crocchette di patate (Potato croquettes) R04 50%
Pancakes R05 75%
Patate al forno (Baked potatoes) R06 66,67%
Piadina R07 62,5%
Polpettine (Tuna meatballs) R08 50%
TiramisÃź R09 66,67%
Pizzette rosse (Small pizzas) R10 33,33%

be applied to recipes different from the starting ones. An example recipe, divided into
action, is reported here, with the conflicting input highlighted in bold.

Apply_heat Food:burro;Container:pentola;
Grinding Patient:noce moscata;
Cause_to_be_included New_member:noce moscata;Existing_member:burro;
Cause_to_be_included New_member:part#latte;Existing_member:burro;
Cause_to_amalgamate Parts:burro;
Cause_to_be_included New_member:farina;Existing_member:composto;
Cause_to_amalgamate Parts:composto;
Apply_heat Food:latte;Container:pentolino;
Cause_to_be_included New_member:noce moscata,sale;Existing_-
member:latte;

In this case, the last action requires the nutmeg (noce moscata) to be added to the
milk (latte). However, the nutmeg had already been added to the butter (burro), as the
system assumes that, when no quantity is specified, all the available quantity of a named
item is used. As a consequence, it is impossible to perform the last action because of the
preceding one.

5. The Conflict Search Graph

In this work, we propose the use of a graph structure to represent state configurations at
any time during a deliberation dialogue. Our model allows to represent dialogue history
(i.e., the PCG) together with domain knowledge (i.e., the CCG), so that CG stability
checks and dialogue state tracking can be represented in the form of graph queries. For
the sake of simplicity, we assume that the items included in the CCG are known to both
interlocutors but, in a wider view, the CCG only represents what an interlocutor believes
to be known in the community they are part of.

From a formal point of view, dialogue states are defined by extending the concept
of D as a sequence of actions, as presented in Section 2, to the joint representation
of dialogue actions and domain knowledge, to support inconsistency detection. This
is represented as a graph D = hV,Ei where V is a set of vertices and E is a set of
edges among the vertices in V . Edges are defined as functions between v1 and v2 where

168

Di Maro et al. Cutting melted butter?

v1, v2 2 V . The edge is assumed to be oriented from v1 to v2. Vertices in V are divided
in subgroups representing different roles in the CG:

r A ⇢ V represents the set of actions incrementally added to the dialogue
and accepted in the CG;r F ⇢ V is a set of frames describing available action types in the domain,
their pre-conditions and their post-conditions;r I ⇢ V is a set of domain items whose features that are relevant for the
domain are known;r L ⇢ V is a set of frame elements that describe the role domain items cover
when involved in an action a 2 A;r N ⇢ V is a set of named entities referring to items inside a specific action
and assigning them to a specific frame element;r C ⇢ V is a set of constraints used to link frame elements to their admissible
items

Edges in E are constituted by a series of two-parameter functions:

r followed_by(ai, aj) states that ai 2 A immediately precedes aj 2 A in the
sequence of actions accepted in the CG;r is_a(ai, fj) states that ai 2 A implements the frame fj 2 F ;r has_fe(fi, lj) states that fi 2 F has a frame element lj 2 E;r names(ai, nj) states that ai 2 A refers to the named entity nj 2 N ;r assigned_to(ni, lj) states that the named entity ni 2 N assigns the role
described by lj 2 L;r refers_to(ni, ij) states that the named entity ni 2 N refers to the item
i 2 I ;r constrains(ci, lj) states that the frame element lj 2 L can only accept
specific items, linked to ci 2 C;r accepts(ci, ij) states that the constraint ci 2 C allows the item ij 2 I to be
assigned to the frame elements ci is linked to;

A stable CG is defined as a graph G where a set of stability checks, also based on
frames pre-conditions, are all verified. For example:

checkm(G) , 8ci 2 C, lj 2 L, nk 2 N, iz 2 I |

accepts(ci, iz) =) constrains(ci, lj) ^ assignedto(nk, lj) ^ refersto(nk, iz)
(1)

states that, if an item is linked to a frame element through a named entity, then the
item is also accepted by the constraints posed on the frame element. Therefore, G is
considered stable using the following rule:

169

Italian Journal of Computational Linguistics Volume 7, Number 1-2

stable(G) , 8 checki | checki(G) (2)

A new candidate action to be included in the CG can be defined as a tuple X =
hani, N̄ , Ē > containing a new action an, a set of named entities N̄ and a set of new edges
Ē. At any given time t, Gt represents the common ground configuration at t. Updating
G by accepting X means creating a new graph G0 =< V 0, E0 > where V 0 = V [an [N̄
and E 0 = E [Ē. G0, can be accepted as an updated version of G only if G0 is stable, so
that:

Gt+1 = G0 if stable(g0) else G (3)

Graph-based representations of the CG also allow the use of path-search queries to
extract details about conflicts causing stability checks failures to guide the generation of
confirmation requests. This theoretical model in implemented, in the presented system
in the form of a Conflict Search Graph.

The Conflict Search Graph is the crucial module of the system, where knowledge is
dynamically stored and checked during the interaction, and where reasoning processes
occur. The aim of this module is to have a structured resource where the knowledge
domain (i.e., part of the CCG) is stored, and whose conflict search module can be used to
signal which input does not respect the rules of the CCG and cannot, therefore, become
part of the PCG. In fact, the graph is not just used to represent the domain and its rules:
it also supports the automatic process of recognising Common Ground Inconsistencies.
Other than detecting unverified pre-conditions, the graph is used to store the dialogue
history so that inconsistencies caused by post-conditions applied by previous actions
let the system identify the potential source of the current inconsistency. Pre-conditions
of an action describe, in general, the configurations of the CG that are compatible with
action instancing. On the other hand, post-conditions are the resulting values assigned
to an entity after the action has been processed. When a post-condition resulting from
a previous action clashes with a pre-condition of the current action and inconsistency
occurs. Whereas the pre-conditions make aware of the possible presence of a conflict, the
post-conditions help identify the conflicting action. The check-related process guides
the adoption of Clarification Requests.

The application described in this section implements a virtual agent, called Bastian,
that accepts commands given in the cooking domain and checks their validity. To
build the knowledge base of this application, two main resources were comprised, as
previously introduced: Wikidata and FrameNet. From Wikidata, domain elements are
retrieved to collect labels and characteristics of the single items involved in the cooking
domain. From FrameNet, the set of basic actions involved in the domain is extracted and
detailed to support the specific dialogue application. Here, the definition of the domain
elements, expressed as SPARQL queries, is presented, together with the frames set and
the connecting structure representing the dialogue domain specific for the application.
For the cooking domain, represented in the application, specific frame elements were
selected, such as semantic roles mainly conveyed by Ingredients, Tools and similar,
and connected to Wikidata classes. Besides the data extracted from the aforementioned
resources, additional information was added in the graph, namely pre-conditions and
post-conditions of specific actions, as it will be illustrated. At the present, we rely on
hard-coded rules to test out hypothesis, but data can be theoretically automatically

170

Di Maro et al. Cutting melted butter?

learned from structured data, like Wikipedia - now still incomplete, especially as far as
pre- and post-conditions information are concerned. In this way, whereas from Wikidata
not only Italian translation but also item states could be retrieved, from FrameNet
action structures are derived. In addition, in the graph, these resources were combined
and enriched with pre-conditions rules, as to represent the rule-based structure of the
CCG. For example, as a first step, each element labelled as Ingredient was defined as an
instance of a class descending from the concept Food (Q2095) in Wikidata. The set of
items representing potential ingredients was obtained using Query 1, in Appendix A.

Subsequently, the tree-like structure rooted in Food was represented in Neo4j and
Italian labels were recovered. These steps were performed in separated queries as the
number of results was significantly high and timeout errors occurred at the endpoint in
this situation. For the representation of other elements of the domain, Tools were defined
as classes of objects descending from Kitchen_Utensil (Q3773693) as shown in Query 2,
in the Appendix A.

Differently from the previous query, instances of classes were not considered as
they cover specific objects, like single knives belonging to collections or commercial
products. In addition, as the number of results of this query was lower, it was possible
to obtain the Italian labels and the tree-like structure in a single query without risk-
ing timeout errors. Similarly, Containers, were defined as classes descending from the
Tableware class (Q851782: glasses, plates, etc. . .), Cooking Instruments descended from
the concept Cookware_and_Bakeware (Q154038: cooking pots, casseroles, etc. . .) while
Cooking appliances descended from the concept Cooking_Appliance (Q57583712: stoves,
ovens, etc. . .). In Neo4j, the relationships between Wikidata nodes reflect the original
ones, as shown in Table 2. All imported nodes are provided with the Wikidata ID, the
list of English labels, and the list of Italian ones.

Table 2

Neo4j nodes and relationships

Source node Relationship Destination Node

INGREDIENT_INSTANCE BELONGS_TO INGREDIENT_CLASS
INGREDIENT_CLASS SUBCLASS_OF INGREDIENT_CLASS

TOOL SUBCLASS_OF TOOL
CONTAINER SUBCLASS_OF CONTAINER

COOKING_APPLIANCE SUBCLASS_OF COOKING_APPLIANCE
COOKING_INSTRUMENT SUBCLASS_OF COOKING_INSTRUMENT

Concerning FrameNet, the entire structure of the resource was modelled in Neo4j
following the same labels and relationships available in the original resource. To access
the most recent version of FrameNet, online data were collected, rather than using peri-
odic dumps. This was necessary because the dumps offer old versions of FrameNet with
no updates. The main Neo4j labels representing the FrameNet structure are FRAME,
and FRAME_ELEMENT, which were connected to each other by a BELONGS_TO rela-
tionship. For each FRAME and FRAME_ELEMENT, their name was imported, together
with frame definitions and related examples.

171

Italian Journal of Computational Linguistics Volume 7, Number 1-2

Table 3

Structure of the sub-graph related to ACTIONs

Source node Relationship Destination Node

USER DECLARES ACTION
ACTION IS_A FRAME_INSTANCE
ACTION REFERS_TO ENTITY
ENTITY REFERS_TO PERCEIVED_ENTITY
ENTITY ASSIGNED_TO FRAME_ELEMENT

5.1 Domain specific knowledge representation

After organising the base resources in the database, the specific domain structure was
established. This served both to connect the original resources and to represent the
application-dependent dialogue constraints. First of all, the root of the application-
specific domain was represented by a DIALOGUE_DOMAIN node, containing a name
property to identify the domain. For each of the domain elements recovered from Wiki-
data, a DOMAIN_ELEMENT node was created, where a name property identifies the
domain element. In the considered case, DOMAIN_ELEMENT nodes were Ingredient
Tool, Container, Cooking appliance and Cooking Instrument. DOMAIN_ELEMENT nodes
were connected to the DIALOGUE_DOMAIN node by BELONGS_TO relationships.
DOMAIN_ELEMENT nodes were, then, connected to the Wikidata nodes retrieved
using the presented SPARQL queries. As a result, the application-specific domain was
connected to Wikidata.

Information coming from Natural Language Understanding and environment per-
ception systems were defined in a specific way to allow standardisation of common
ground consistency checks. In the case of deliberation dialogue, a USER node was
defined for each human participant. One peculiarity of this kind of dialogue is that
more than two agents can be involved in the exchange; that is also one of the reasons
why argumentation-based inference theories cannot be always applied to dialogue and,
therefore, a dedicated framework is needed. This node thus allows for the representa-
tion of each human interlocutor recognised by the systems. ACTION nodes represent
declarations from a USER, which is connected to them by DECLARES relationships.
Since ACTIONs are always related to FRAME_INSTANCEs, a IS_A relationship was
established between ACTIONs and FRAME_INSTANCES they represent. For each
recognised ACTION, the linguistic entities recognised in the user utterance were rep-
resented by ENTITY nodes coherently with NLU responses. ACTIONs were linked to
ENTITY nodes by REFERS_TO relationships. Moreover, ENTITY nodes were linked
to FRAME_ELEMENT nodes, according to the role NLU assigns to the recognised
entities, by ASSIGNED_TO relationships. Lastly, objects perceived by the agent in the
environment are represented by PERCEIVED_ENTITY nodes, which were linked to
DOMAIN_ELEMENT nodes by IS_A relationships. The different types of node sepa-
rating what is being said from what is perceived are necessary to support grounding
approaches, where linguistic entities are linked to perceived objects. This also allows to
detect inconsistencies between entities present in user utterances and perceived reality.
In this case, a simple strategy based on string similarity was used to perform grounding,
as the main interest is on conflict detection. The structure of the sub-graph related to
ACTIONs is shown in Table 3.

172

Di Maro et al. Cutting melted butter?

Once an ACTION is declared, the related ENTITY nodes are created and linked
to the ACTION node by a REFERS_TO relationship. ENTITY nodes are then linked to
the PERCEIVED_ENTITY nodes on the basis of the Sorensen-Dice coefficient (Sorensen
1948) obtained for every possible pairing between the value property of the ENTITY
node and the name property of all the available PERCEIVED_ENTITY nodes. This way,
plurals, derivative forms, or non-standards forms could be included to be linked to
PERCEIVED_ENTITY nodes comprised in the knowledge graph. These are linked to
the corresponding PERCEIVED_ENTITY nodes by the relation REFERS_TO. Nodes and
relationships were generated using Query 3, in the Appendix A.

To connect the dialogue domain to FrameNet, a similar strategy was adopted.
In total, 10 frames were used in the presented application: for each of these frames,
a FRAME_INSTANCE node was created and connected to the original FRAME by
an INSTANCE_OF relationship. Also, for each frame, a subset of FRAME_ELEMENT
nodes was considered for the application domain. To represent this, a USES relation-
ship was established between the FRAME_INSTANCE node and the FRAME_ELE-
MENT node of interest. To indicate which domain elements can be associated with a
FRAME_ELEMENT in the application domain, CONSTRAINT nodes were established.
First of all, FRAME_INSTANCE nodes were connected to CONSTRAINT nodes by
a HAS_CONSTRAINT relationship. Then, the CONSTRAINT node was connected to
the FRAME_ELEMENT node it was applied to by a REFERS_TO relationship and to
a DOMAIN_ELEMENT node that can be associated to the FRAME_ELEMENT by an-
other REFERS_TO relationship. CONSTRAINT nodes can, therefore, be used to describe
which DOMAIN_ELEMENTS can be associated to fill a slot based on a FRAME_ELE-
MENT in a dialogue management system. While CONSTRAINT nodes are not relevant
for conflict detection, they are included to support more advanced checks in the future.

Since Framenet does not provide pre-conditions and post-conditions for the appli-
cation of the related actions, these must be defined at application level: in this case,
pre- and post-conditions are represented as properties of the FRAME_INSTANCE nodes
and contain Cypher queries designed to verify, given the way the specific application
manages common ground updates, that the necessary checks are performed before ac-
cepting a user-declared action. To be interpreted by a single function, in the application
logic, the results format is constrained to a table containing a row for each pre-condition
to be tested. Each row consists of the following columns:

r Eval: the truth value of the pre-condition;r ConflictingAction: the ID of the ACTION node causing a pre-condition to
be violated, if presentr NLExplanation: a fragment of text providing an explanation, in natural
language, of the violated pre-condition;r ConflictingFrame: the name property of the FRAME instanced by the
FRAME_INSTANCE causing the conflict;r OriginalEntity: the name property of the PERCEIVED_ENTITY involved
in the ACTION causing the violation.

As a pre-condition example, consider the Grinding frame. As showed in Listing 4
in Appendix A, the FRAME_ELEMENT Patient is checked with the UNION of three
separated sub-queries, each considering a different pre-condition, to verify that it is not

173

Italian Journal of Computational Linguistics Volume 7, Number 1-2

Figure 3

The application level dialogue domain connecting Wikidata and FrameNet. The structure of the
original resources is preserved in this schema while the dialogue domain structure and
constraint inform the served application. Purple and orange nodes represent Wikidata instances
and classes, green nodes represent DOMAIN_ELEMENTs, blue nodes represent CONSTRAINTs,
red nodes represent FRAME_ELEMENTs, pink nodes represent FRAME_INSTANCEs. For
illustration purposes, only one FRAME node (in cyan) is reported. The brown node represent the
DIALOGUE_DOMAIN node.

populated with an entity, whose quantity is no longer available, or with an entity which
is is neither liquid or already in a powder form.

Running this query on a graph representing the common ground configuration
is, thus, important to check whether the last ACTION can be accepted or not, in that
it is verified that the updated graph does not violate the pre-conditions set by the
activated FRAME_INSTANCE. Figure 3 shows the application level dialogue domain
as an intermediate graph structure connecting the knowledge provided by Wikidata
and FrameNet.

If all pre-conditions are verified, the declared ACTION can be accepted and post-
conditions can be applied. For the case of the FRAME_INSTANCE related to the FRAME
Grinding, the PERCEIVED_ENTITY related to the ENTITY assigned to the Patient
FRAME_ELEMENT becomes a new version of itself, which acquires the POWDER
label. The Grinding post-conditions are declared as in Listing 9 in Appendix A. The
pre-conditions defined before would not be verified now, for the most recent version of
the involved PERCEIVED_ENTITY. This is because it cannot be assigned to the Patient
FRAME_ELEMENT for an ACTION related to the FRAME_INSTANCE referring to the
FRAME Grinding. The Neo4j graph representing a user utterance and its role in the
common ground is shown in Figure 4.

6. Conflict detection

To connect the internal knowledge representation hosted in Neo4j with the interaction
management system implemented in UE4, the FANTASIA framework is used. To test
the capability of the system to keep track of the dialogue state, commands are sent to
the system one at a time. This way, the system can either accept or reject statements by

174

Di Maro et al. Cutting melted butter?

Figure 4

The graph representing the relationship between data coming from an NLU system in the
common ground given the user utterance Trita la noce moscata (Grind the nutmeg). A USER
(green) DECLARES an ACTION (purple), which IS_A FRAME_INSTANCE (pink) of the
FRAME (cyan) Grinding. The ACTION REFERS_TO an ENTITY (grey), that is assigned to the
FRAME_ELEMENT (red) Patient of Grinding and REFERS_TO a PERCEIVED_ENTITY (yellow).
According to the Grinding post-conditions, a second PERCEIVED_ENTITY is CREATED_FROM
the original one representing the noce moscata. The new PERCEIVED_ENTITY is also
CREATED_BY the ACTION and it has the POWDER label.

updating the graph and rolling back changes, if necessary, by using graph projections
in open database transactions to test pre-conditions. When a command is accepted,
post-conditions are used to commit the transaction. The system used to test the conflict
detection capabilities of the system can easily be extended to a fully interactive approach
to involve human participants, in the future.

The Neo4j module provides access to the graph-based representation of the CG
and to the dialogue history. UE4 manages the interaction using the 3D interface and
the information provided by the other modules. UE4 also hosts the application logic,
generating the virtual agent’s behaviour using an underlying model based on the results
presented before. To allow updates to the domain representation to be reflected in UE4,
the system first queries the graph database to obtain the list of FRAME_INSTANCEs
and their CONSTRAINTs, dynamically initialising internal data structures to match the
ones obtained from Neo4j. These are used in UE4 to support the creation of appropriate
queries once user utterances are analysed. After obtaining a structured representation of
the user’s utterance from the an NLU backend, the CG manager matches the intents and
entities detected by this module with, respectively, frames and FRAME_ELEMENTs, as
described in the previous subsection. To simulate the process of hypothesising the situa-
tion after accepting the ACTION resulting from the analysis of the user utterance, the
CG manager opens a transaction in Neo4j, adding the ACTION and its related structure
without committing changes. This way, it is possible to work with a volatile version of
the updated database that can be easily rolled back, should the ACTION be rejected.
In this way, a hypothetical common ground is created to check for consistency based on
the rules defined in the graph. Since multiple transactions can be opened in Neo4j, it is
also possible, if necessary, to support the simultaneous existence of multiple hypothetical

175

Italian Journal of Computational Linguistics Volume 7, Number 1-2

common grounds. Pre-conditions are, therefore, checked inside the open transaction and
the graph database compiles a report following the structure previously described. The
CG manager, using this information, commits the changes together with post-conditions
if all pre-conditions are verified and generates an acknowledgement utterance to be
synthesised by the TTS system. If a pre-condition is not verified inside the transaction,
the changes are rolled back and the data included in the Neo4j report are used to
generate an appropriate feedback message: in this case, a negative polar question. In
other words, given the sequence of frames activated by user utterances F = {f1, ..., fk},
for each argument of the current predicate evoking a specific instantiated semantic
frame fk, and given the pre-conditions sprek = {p1, ..., pn} of the k � th frame, when
pi of the semantic role of that argument is verified for 1 <= i <= n, no conflicts arise.

If a conflict occurs, it must be signalled in order to enable subsequent repair. The
fact that pre- and post-conditions are explicitly reported in the graph is not only useful
to find the conflict, but also to explain why an action cannot be accepted, possibly
indicating the source of the error. Before highlighting the conflicting action with a polar
question, the system explains why the action cannot be performed. For instance, if the
user asks the system to grind an ingredient which was already ground in a previous
action, Bastian will reply with I can’t. X is ground followed by the question Didn’t I have
to grind X? The data building the explanation are retrieved from a Cypher query and
specifically from the aforementioned NLExplanation column. The explanation given
here is of the type why-explanation, which is used to convey the underlying, hidden
reasons for an action or event (Stange and Kopp 2020). While explanations are found to
increase the understandability and desirability of agents’ behaviours (Stange and Kopp
2020), they can be cause of failures in case of inconsistencies. Although explanations
are useful in the interaction, as they undo the devastating consequences of logical
inconsistencies, they are not sufficient to detect the conflict (Khemlani and Johnson-
Laird 2012). As demonstrated in (Domaneschi, Romero, and Braun 2017), the form used
in verbal productions having the function of a Clarification Request is influenced by the
type of conflict detected between bias and contextual evidence. The combination of both
explanations and clarification requests can, therefore, consistently improve the interac-
tion. If, on the other hand, the ACTION can be accepted, the NL feedback generated is a
simple feedback with an Acknowledgement pragmatic function (Savy 2010). The system
logic flow, as designed for a fully interactive agent, is summarised in Figure 5.

7. Results

Starting from the sequences of frames activated by actions depicted in the considered
recipes, a dedicated task was used to test the conflict detection capabilities of the
machine and its abilities to identify the sources of such conflicts. As reported in (Di Maro
2021), the level at which communicative failures can occur are of four different types,
hierarchically ordered: Contact, Perception, Understanding, and Intention. When a
problem at the contact level occurs, all the other levels fail, as they are entailed in the first
one; when a problem does not occur at contact level, it can occur at the perception level,
and the following ones are, therefore, failing too, and so on. Before analysing how the
Common Ground is stored and how inconsistencies are found, it is important to point
out what happens at the preceding levels, i.e., speech and intent recognition, where for
the first one the acoustic signal is recognised, whereas for the second one the semantic
analysis is carried out. For the goals of this study, we do not consider the potential
communicative failures occurring at levels higher in the hierarchy presented in (Di Maro
2021). This is plausible because speech recognition and intent recognition modules have

176

Di Maro et al. Cutting melted butter?

Figure 5

The logic flow in the cooking domain for a fully interactive agent.

reached good reliability. As a reference, on our materials, speech recognition reached a
word error rate of 0,14, while intent recognition reached an average F-score of 0,74.

On the other hand, to test the Conflict Search Graph, for each actions sequence
describing a recipe, the interpreted frames were submitted to the graph, iteratively. At
each step, the system considers the PCG configuration should the last action be accepted
and identifies the relevant pre-conditions. It, then, applies the selected pre-conditions
and it verifies if the resulting graph is stable. If stability is verified, the graph is updated
using the action’s post-conditions, otherwise changes are rejected and dialogue history
is analysed to find a possible cause for the detected conflict. This process is included
in the pre-conditions check, as offending patterns can be used to further detail the
problem, as in traditional inference engines. From the application point of view, we
specify that, while pre-conditions and post-conditions were specified at database level,
the query to perform the stability checks and to recover the details was always the same.
This represents an efficient way to separate application logic from PCG management.

In Table 5, the test results are displayed. The system always detected the conflicts
and was able to correctly identify the conflict in most of the cases, with three exceptions,
namely Pancakes, Piadina Romagnola, and Polpettine. In these cases, the conflict was
detected but the expected conflicting action did not correspond to the one selected by
the system. By analysing the errors, however, the system choices do have an acceptable
explanation.

For the Pancakes recipe, the expected conflict corresponded to melt butter in a pan,
where no quantity was specified although only part of the butter should have been
used in this action. The conflict is triggered when the action put the butter in the pan
is received in input, as the butter is no longer available. Nonetheless, the conflict was
found at add milk and butter to the yolks. Although the error was to use the whole butter
quantity in the action of melting it, it is also true that it actually becomes impossible to
put the butter in the pan when this is added to other ingredients.

Similarly, in the Piadina recipe, the conflict was inserted by replacing put part of the
flour in the bowl with put the flour in the bowl. The conflict is triggered when the operation

177

Italian Journal of Computational Linguistics Volume 7, Number 1-2

dust the work surface with flour is received in input, as the flour is no longer available.
The system found the conflict at add lard, salt, baking soda and little water to the flour. As
before, the only constraint required is the usability of flour, which stopped being usable
after being mixed with other ingredients. Furthermore, it had not yet undergone any
change of status. The next action, corresponding to Cause_to_amalgamate, is identified as
the conflicting action because it is there that any possible reference to the flour is lost.

Finally, for the Polpettine di tonno recipe, the ingredient ricotta (add parmesan, tuna,
eggs, and anchovies to the ricotta) was replaced by breadcrumbs (add parmesan, tuna, eggs
and anchovies to breadcrumbs. The conflict was found by the system in the action where
other ingredients were added to the breadcrumbs, making the breadcrumbs no longer
available. This ingredient was, in fact, needed in a subsequent action, where meatballs
had to be dunked in it.

Summarising, the presented results show that architecture based on the Conflict
Search Graph was able to analyse pre-conditions rules correctly in a simulated scenario.
In those cases where system responses were not equal to the ones expected at design
time, response analysis indicated that, still, an acceptable logical explanation was pro-
vided by the system.

8. Conclusions

Dialogue systems’ architectures designed for argumentation are often tailored on spe-
cific tasks, making the approaches harder to generalise and less oriented towards the
definition of theoretical models of Argumentation Based Dialogue. These have been
reported to be less investigated than the ones developed for Argumentation Based
Inference. In this paper, we have proposed an architecture, based on the FANTASIA
framework, leveraging on the capabilities of graph databases to store different kinds
of information related to the Common Ground to support dialogue management tasks
that involve argumentation features. We have shown a procedure to collect and organise
data coming from widely accessible information sources and we integrated these data
with a separated representation to manage application-specific knowledge. This way,
both the domain and the incrementally built interaction history concur in determining
how dialogue evolves using the same structure. Nevertheless, a separation between
domain knowledge (the CCG) and the application specific knowledge (the PCG) is still
present, so that the system is flexible and easily adaptable to new application domains.

From the client application level, the operational cycle is abstracted in a sequence of
steps that do not depend on the characteristics of the applications itself: after an intent is
recognised, stability checks can be performed using a general query retrieving and test-
ing pre-conditions and returning a fixed structure, independent from the intent itself.
Also, conflict details are retrieved as part of this process, similarly to what happens with
inference engines. Hypothesising processes are managed using database transactions and
commit/rollback mechanisms linked, when necessary, to post-conditions application.
This answers the first research question by showing that graph databases indeed allow
to represent, in a single, performance oriented, structure both dialogue state and CG.

To test the approach, we considered the specific case of deliberation dialogues and a
specific type of conflict between previously acquired information (bias) and the implica-
tions of the last utterance (evidence). We have shown that specific conflict patterns in the
dialogue domain (post-conditions of previously accepted actions colliding with the pre-
conditions of incoming new actions) can be described in the form of path-search queries
to the graph database, which always detected the conflicts and provided a plausible so-
lution even in the cases where the obtained answer was different from the expected one.

178

Di Maro et al. Cutting melted butter?

This representation inherits the advantages coming from performance-oriented graph
technologies while also providing many of the services offered by inference engines,
thus constituting a powerful platform to develop a general view of Argumentation
Based Dialogue using graph representations. The presented test constitutes the basis
for argumentation-based dialogue systems centred on the concept of conflict detection
for interaction management, providing indications for future developments aimed at
fully answering the second research question.

References

Airenti, Gabriella, Bruno Giuseppe Bara, and Marco Colombetti. 1993. Conversation and
behavior games in the pragmatics of dialogue. Cognitive Science, 17(2):197–256.

Allwood, Jens. 1995. An activity based approach to pragmatics. In Abduction, Belief and Context in
Dialogue. John Benjamins.

Allwood, Jens. 2013. A framework for studying human multimodal communication. Coverbal
synchrony in human-machine interaction, 17.

Axelsson, Nils and Gabriel Skantze. 2020. Using knowledge graphs and behaviour trees for
feedback-aware presentation agents. In Proceedings of the 20th ACM International Conference on
Intelligent Virtual Agents, pages 1–8, Online, October.

Baker, Collin F., Charles J. Fillmore, and John B. Lowe. 1998. The berkeley framenet project. In
36th Annual Meeting of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics, Volume 1, pages 86–90, Montreal, Quebec, Canada,
August.

Baker, Rachel and Valerie Hazan. 2011. Diapixuk: task materials for the elicitation of multiple
spontaneous speech dialogs. Behavior research methods, 43(3):761–770.

Bara, Bruno Giuseppe. 1999. Pragmatica cognitiva: i processi mentali della comunicazione. Bollati
Boringhieri.

Bazzanella, Carla. 1994. Le facce del parlare. Un approccio pragmatico all’italiano parlato, volume 17.
La nuova Italia Collana: Biblioteca di Italiano e oltre.

Bazzanella, Carla. 2005. Linguistica e pragmatica del linguaggio. Un’introduzione. Laterza.
Becker, Tilman, Nate Blaylock, Ciprian Gerstenberger, Ivana Kruijff-Korbayová, Andreas

Korthauer, Manfred Pinkal, Michael Pitz, Peter Poller, and Jan Schehl. 2006. Natural and
intuitive multimodal dialogue for in-car applications: The sammie system. Frontiers in Artificial
Intelligence and Applications, 141:612.

Beun, Robbert-Jan and Rogier M. van Eijk. 2004. Conceptual discrepancies and feedback in
human-computer interaction. In Proceedings of the conference on Dutch directions in HCI, page 13.
Association for Computing Machinery, New York, NY, United States, June.

Black, Elizabeth and Katie Atkinson. 2010. Agreeing what to do. In International Workshop on
Argumentation in Multi-Agent Systems, pages 12–30, Toronto, Canada, May. Springer.

Bordes, Antoine, Y-Lan Boureau, and Jason Weston. 2016. Learning end-to-end goal-oriented
dialog. arXiv preprint arXiv:1605.07683.

Bousquet-Vernhettes, Caroline, Régis Privat, and Nadine Vigouroux. 2003. Error handling in
spoken dialogue systems: toward corrective dialogue. In ISCA Tutorial and Research Workshop
on Error Handling in Spoken Dialogue Systems, Chateau d’Oex, Vaud, Switzerland, August.

Buring, Daniel and Christine Gunlogson. 2000. Aren’t positive and negative polar questions the
same? In Presented at Linguistic Society of America.

Clark, Eve V. 2015. Common ground. In The Handbook of Language Emergence. Wiley, Chichester,
UK, pages 328–353.

Clark, Herbert H. 1996. Using Language. Cambridge University Press, Cambridge, UK.
Clark, Herbert H. and Susan E. Brennan. 1991. Grounding in communication. In Lauren B.

Resnick, John M. Levine, and Stephanie D. Teasley, editors, Perspectives on Socially Shared
Cognition, pages 222–233, Washington, DC, USA. American Psychological Association.

Di Maro, Maria. 2021. "Shouldn’t I use a polar question?" Proper question forms disentangling
inconsistencies in dialogue systems. Ph.D. Dissertation.

Di Maro, Maria, Antonio Origlia, and Francesco Cutugno. 2021. Polarexpress: Polar question
forms expressing bias-evidence conflicts in italian. International Journal of Linguistics.

Domaneschi, Filippo, Maribel Romero, and Bettina Braun. 2017. Bias in polar questions:
Evidence from english and german production experiments. Glossa: a Journal of General

179

Italian Journal of Computational Linguistics Volume 7, Number 1-2

Linguistics, 2(1).
Dung, Phan Minh. 1995. On the acceptability of arguments and its fundamental role in

nonmonotonic reasoning, logic programming and n-person games. Artificial intelligence,
77(2):321–357.

Dunne, Paul E. and T.J.M. Bench-Capon. 2006. Suspicion of hidden agenda in persuasive
argument. Frontiers in Artificial Intelligence and Applications, 144:329.

Hadjinikolis, Christos, Yiannis Siantos, Sanjay Modgil, Elizabeth Black, and Peter McBurney.
2013. Opponent modelling in persuasion dialogues. In Twenty-Third International Joint
Conference on Artificial Intelligence, Beijing, China, August.

Hayano, Kaoru. 2013. 19 question design in conversation. The handbook of conversation analysis,
page 395.

Heritage, John. 2002. The limits of questioning: Negative interrogatives and hostile question
content. Journal of Pragmatics, 34(10-11):1427–1446.

Huang, Yan. 2017. The Oxford Handbook of Pragmatics. Oxford University Press.
Hunter, Anthony and Matthias Thimm. 2016. On partial information and contradictions in

probabilistic abstract argumentation. In Fifteenth International Conference on the Principles of
Knowledge Representation and Reasoning, Cape Town, South Africa, April.

Hunter, Anthony and Matthias Thimm. 2017. Probabilistic reasoning with abstract
argumentation frameworks. Journal of Artificial Intelligence Research, 59:565–611.

Jakobson, Roman. 1956. Metalanguage as a linguistic problem. Selected writings, 7:113–121.
Khemlani, Sangeet S. and Philip N. Johnson-Laird. 2012. Hidden conflicts: Explanations make

inconsistencies harder to detect. Acta Psychologica, 139(3):486–491.
Kok, Eric M. 2013. Exploring the practical benefits of argumentation in multi-agent deliberation. Ph.D.

thesis, Utrecht University.
Kok, Eric M., John-Jules Ch Meyer, Henry Prakken, and Gerard AW Vreeswijk. 2010. A formal

argumentation framework for deliberation dialogues. In International Workshop on
Argumentation in Multi-Agent Systems, pages 31–48, Toronto, Canada, May. Springer.

Koshik, Irene. 2002. A conversation analytic study of yes/no questions which convey reversed
polarity assertions. Journal of Pragmatics, 34(12):1851–1877.

Koshik, Irene. 2005. Beyond rhetorical questions: Assertive questions in everyday interaction,
volume 16. John Benjamins Publishing.

Kousidis, Spyros, Casey Kennington, Timo Baumann, Hendrik Buschmeier, Stefan Kopp, and
David Schlangen. 2014. A multimodal in-car dialogue system that tracks the driver’s attention.
In Proceedings of the 16th International Conference on Multimodal Interaction, pages 26–33,
Istanbul, Turkey, November. ACM.

Ladd, Dwight Robert. 1981. A first look at the semantics and pragmatics of negative questions
and tag questions. In Papers from the Regional Meeting. Chicago Ling. Soc. Chicago, Ill, volume 17,
pages 164–171.

Leech, Geoffrey. 2003. Pragmatics and dialogue. In The Oxford Handbook of Computational
Linguistics. Oxford University Press.

Legg, Shane and Marcus Hutter. 2007. Universal intelligence: A definition of machine
intelligence. Minds Mach., 17(4):391–444, December.

López, Gustavo, Luis Quesada, and Luis A. Guerrero. 2017. Alexa vs. Siri vs. Cortana vs. Google
Assistant: a comparison of speech-based natural user interfaces. In International Conference on
Applied Human Factors and Ergonomics, pages 241–250, Los Angeles, USA, July. Springer.

McGlashan, Scott, Norman Fraser, Nigel Gilbert, Eric Bilange, Paul Heisterkamp, and Nick
Youd. 1992. Dialogue management for telephone information systems. In Proceedings of the
third conference on Applied natural language processing, pages 245–246, Trento, Italy, 31 March - 3
April. Association for Computational Linguistics.

Müller, Romy, Dennis Paul, and Yijun Li. 2021. Reformulation of symptom descriptions in
dialogue systems for fault diagnosis: How to ask for clarification? International Journal of
Human-Computer Studies, 145:102516.

Origlia, Antonio, Francesco Cutugno, Antonio Rodà, Piero Cosi, and Claudio Zmarich. 2019.
Fantasia: a framework for advanced natural tools and applications in social, interactive
approaches. Multimedia Tools and Applications, 78(10):13613–13648.

Pichl, Jan, Petr Marek, Jakub Konrád, Petr Lorenc, Van Duy Ta, and Jan Šedivỳ. 2020. Alquist 3.0:
Alexa prize bot using conversational knowledge graph. 3rd Proceedings of Alexa Prize.

Prakken, Henry. 2005. Coherence and flexibility in dialogue games for argumentation. Journal of
logic and computation, 15(6):1009–1040.

180

Di Maro et al. Cutting melted butter?

Prakken, Henry. 2017. Historical overview of formal argumentation. IfCoLog Journal of Logics and
their Applications, 4(8):2183–2262.

Rienstra, Tjitze, Matthias Thimm, and Nir Oren. 2013. Opponent models with uncertainty for
strategic argumentation. In Twenty-Third International Joint Conference on Artificial Intelligence,
Beijing, China, August.

Ritter, Alan, Colin Cherry, and Bill Dolan. 2010. Unsupervised modeling of twitter conversations.
In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 172–180, Los Angeles, California, June.
Association for Computational Linguistics.

Roque, Antonio and David Traum. 2009. Improving a virtual human using a model of degrees of
grounding. In Twenty-First International Joint Conference on Artificial Intelligence, Pasadena,
California, USA, July. Citeseer.

Sanders, Andrew. 2016. An introduction to Unreal engine 4. CRC Press.
Savy, Renata. 2010. Pr. A. Ti. D: A coding scheme for pragmatic annotation of dialogues. In The

seventh international conference on Language Resources and Evaluation, Malta, May.
Serban, Iulian Vlad, Ryan Lowe, Peter Henderson, Laurent Charlin, and Joelle Pineau. 2018. A

survey of available corpora for building data-driven dialogue systems: The journal version.
Dialogue & Discourse, 9(1):1–49.

Serban, Iulian Vlad, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville, and Joelle Pineau.
2016. Building end-to-end dialogue systems using generative hierarchical neural network
models. In Conference of the Association for the Advancement of Artificial Intelligence, volume 16,
pages 3776–3784, Phoenix, Arizona, USA, February.

Shannon, Claude Elwood. 1948. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423.

Sidnell, Jack and Tanya Stivers. 2012. The Handbook of Conversation Analysis, volume 121. John
Wiley & Sons.

Sorensen, Thorvald. 1948. A method of establishing groups of equal amplitude in plant
sociology based on similarity of species content and its application to analyses of the
vegetation on danish commons. Biologiske Skrifter, 5:1–34.

Sperber, Dan et al. 1994. Understanding verbal understanding. What is intelligence, 179:98.
Stange, Sonja and Stefan Kopp. 2020. Effects of a social robot’s self-explanations on how humans

understand and evaluate its behavior. In Proceedings of the 2020 ACM/IEEE International
Conference on Human-Robot Interaction, pages 619–627, Cambridge, United Kingdom, March.

Traum, David R. 1994. A computational theory of grounding in natural language conversation.
Technical report, Rochester Univ NY Dept of Computer Science.

Traum, David R. 1999. Speech acts for dialogue agents. In Foundations of rational agency. Springer,
pages 169–201.

Vinyals, Oriol and Quoc Le. 2015. A neural conversational model. arXiv preprint arXiv:1506.05869.
Walton, Douglas and Erik C.W. Krabbe. 1995. Commitment in dialogue: Basic concepts of

interpersonal reasoning. SUNY press.
Walton, Douglas N. 1984. Logical Dialogue-Games. University Press of America, Lanham,

Maryland.
Warner, Michael. 2002. Wanted: A definition of intelligence. Studies in Intelligence, 46:9, 01.
Webber, Jim and Ian Robinson. 2018. A programmatic introduction to neo4j. Addison-Wesley

Professional.

181

Italian Journal of Computational Linguistics Volume 7, Number 1-2

Appendix A

SELECT DISTINCT ?item ?itemLabel (group_concat(DISTINCT
?altEN;separator="|") as ?altENs) ?type
{

{
?item wdt:P31 ?class .
?class wdt:P279* wd:Q2095 .
?item rdfs:label ?itemLabel .

FILTER(LANG(?itemLabel) = "en")

OPTIONAL{
?item skos:altLabel ?altEN.
FILTER (lang(?altEN) = "en")

}

BIND("instance" AS ?type)
}
UNION
{

?item wdt:P279* wd:Q2095 .
?item rdfs:label ?itemLabel .

FILTER(LANG(?itemLabel) = "en")

OPTIONAL{
?item skos:altLabel ?altEN.
FILTER (lang(?altEN) = "en")

}
BIND("class" AS ?type)

}
}
GROUP BY ?item ?itemLabel ?altENs ?type

Listing 1

SPARQL query used to retrieve the set of possible ingredients from Wikidata.

SELECT ?item ?parent ?itLabel ?enLabel
(group_concat(DISTINCT ?altEN;separator="|") as ?altENs)
(group_concat(DISTINCT ?altIT;separator="|") as ?altITs) {

?item wdt:P279* wd:Q3773693.
?item wdt:P279 ?parent.
?parent wdt:P279* wd:Q3773693.

OPTIONAL {
?item rdfs:label ?enLabel .
FILTER(LANG(?enLabel) = "en")

}

OPTIONAL {
?item rdfs:label ?itLabel .
FILTER(LANG(?itLabel) = "it")

}

FILTER (bound(?itLabel) || bound(?enLabel))

OPTIONAL{
?item skos:altLabel ?altEN.

182

Di Maro et al. Cutting melted butter?

FILTER (lang(?altEN) = "en")
}

OPTIONAL{
?item skos:altLabel ?altIT.
FILTER (lang(?altIT) = "it")
}

}
GROUP BY ?item ?parent ?itLabel ?enLabel ?altENs ?altITs

Listing 2

SPARQL query used to retrieve tools from Wikidata.

MATCH (a:ACTION) WHERE NOT (a)-[:IS_FOLLOWED_BY]->()
WITH a
MATCH (pe1:PERCEIVED_ENTITY), (e:ENTITY)<-[:REFERS_TO]-(a)
OPTIONAL MATCH (pe1)<-[:CREATED_FROM]-(pe2:PERCEIVED_ENTITY)
WITH pe1, a, e, pe2, COLLECT(pe2)[0] AS successor
WHERE successor IS NULL OR NOT successor.name = pe1.name
UNWIND split(apoc.text.replace(e.value, "\[[\.\d]+\]", ""), ",") AS

names
WITH pe1.name AS name, COLLECT(names) AS names, apoc.text.

sorensenDiceSimilarity(names, pe1.name) AS score, a
WITH MAX(score) as maxValue, a
MATCH (pe1:PERCEIVED_ENTITY), (e:ENTITY)<-[:REFERS_TO]-(a)
OPTIONAL MATCH (pe1)<-[:CREATED_FROM]-(pe2:PERCEIVED_ENTITY)
WITH maxValue, pe1, a, e, pe2, COLLECT(pe2)[0] AS successor WHERE

successor IS NULL OR NOT successor.name = pe1.name UNWIND split(
apoc.text.replace(e.value, "\[[\.\d]+\]", ""), ",") AS names

WITH pe1.name AS bestMatch, COLLECT(names) AS names, COLLECT(apoc.text.
sorensenDiceSimilarity(names, pe1.name)) AS score, maxValue, a

WITH bestMatch, apoc.coll.zip(names, score) AS pairs, maxValue, a
WITH bestMatch, MAX([pair IN pairs WHERE pair[1] = maxValue])[0][0] AS

entityName, a
WHERE entityName IS NOT NULL
WITH entityName, bestMatch, a
MATCH (pe1:PERCEIVED_ENTITY), (e:ENTITY)<-[:REFERS_TO]-(a) WHERE pe1.

name = bestMatch AND e.value CONTAINS(entityName)
OPTIONAL MATCH (pe1)<-[:CREATED_FROM]-(pe2:PERCEIVED_ENTITY)
WITH entityName, a, pe1, e, pe2, COLLECT(pe2)[0] AS successor WHERE

successor IS NULL OR NOT successor.name = pe1.name
CREATE (pe1)<-[:REFERS_TO {label: entityName}]-(e)

Listing 3

Cypher query linking linguistic ENTITY nodes to the corresponding PERCEIVED_ENTITY
nodes after NLU

// Pre-conditions for Grinding
//Condition 1: Verify that there is enough of the involved

PERCEIVED_ELEMENTs to perform the ACTION
// Get the last ACTION, the ENTITY nodes it refers to, the

PERCEIVED_ELEMENTs they REFER_TO
// and the FRAME_ELEMENTs of type "Patient" ENTITY node are ASSIGNED_TO

.
MATCH (a1:ACTION)-[:REFERS_TO]->(e:ENTITY)-[:ASSIGNED_TO]->(fe:

FRAME_ELEMENT),
(e)-[r1:REFERS_TO]->(pe1:PERCEIVED_ENTITY)
WHERE NOT (a1)-[:IS_FOLLOWED_BY]->() AND fe.name IN ['Patient']

183

Italian Journal of Computational Linguistics Volume 7, Number 1-2

// If available, get the PERCEIVED_ENTITY nodes CREATED_FROM each
PERCEIVED_ENTITY

// ENTITY nodes REFER_TO.
OPTIONAL MATCH (pe1)<-[r2:CREATED_FROM]-(pe2:PERCEIVED_ENTITY)

// Compute the PERCEIVED_ELEMENTs quantity used by the last ACTION. 0
means "all the available quantity".

// If the available quantity is infinite, default to 1 to avoid
Infinity - Infinity = NaN

WITH pe1, r2, a1,
CASE
WHEN toFloat(apoc.text.regexGroups(e.value, r1.label + "\[(\d+)\]")
[0][1]) = 0 AND gds.util.isFinite(pe1.quantity) THEN pe1.quantity -
SUM(r2.quantity)

WHEN toFloat(apoc.text.regexGroups(e.value, r1.label + "\[(\d+)\]")
[0][1]) = 0 AND gds.util.isInfinite(pe1.quantity) THEN 1

ELSE toFloat(apoc.text.regexGroups(e.value, r1.label + "\[(\d+)\]")
[0][1])

END AS newQuantity

// If the available quantity is more than 0 and subtracting the
declared quantity is at least 0 the pre-condition is verified

WITH pe1.quantity - SUM(r2.quantity) - newQuantity >= 0 AND pe1.
quantity - SUM(r2.quantity) > 0 AS Eval,

// Builds the explanation concatenating "Non ho abbastanza" with the
label of the insufficient PERCEIVED_ENTITY

"Non ho abbastanza " + pe1.name + ". " AS NLExplanation, pe1, a1

// If the conflict is caused by a preceding ACTION, get the necessary
data to build the HNPQ

// (ID of the conflicting ACTION, name of the conflicting FRAME, list
of Ingredients involved in the conflicting ACTION)

OPTIONAL MATCH (pe1)<-[:CREATED_FROM]-(pe2:PERCEIVED_ENTITY)-[:
CREATED_BY]->(a2:ACTION)-[:REFERS_TO]->(:ENTITY)-[:REFERS_TO]->(pe3
:PERCEIVED_ENTITY),

(a2:ACTION)-[:IS_A]->(:FRAME_INSTANCE)-[:INSTANCE_OF]->(f:FRAME) RETURN
Eval,

COLLECT(ID(a2))[0] AS ConflictingAction,
NLExplanation,
COLLECT(f.name)[0] AS ConflictingFrame,
apoc.text.join(COLLECT(DISTINCT pe3.name), ", ") AS OriginalEntity

//Condition 2: Verify that the involved PERCEIVED_ELEMENT is not a
POWDER

UNION
// Get the last ACTION, the ENTITY nodes it refers to, the

PERCEIVED_ELEMENTs they REFER_TO and having the POWDER label
// and the FRAME_ELEMENTs of type "Patient" ENTITY node are ASSIGNED_TO

.
MATCH (a1:ACTION)-[:REFERS_TO]->(e:ENTITY)-[:ASSIGNED_TO]->(fe:

FRAME_ELEMENT {name: 'Patient'}),
(e)-[:REFERS_TO]->(pe1:PERCEIVED_ENTITY)
WHERE NOT (a1)-[:IS_FOLLOWED_BY]->() AND 'POWDER' IN labels(pe1)

// If at least one PERCEIVED_ELEMENT with the POWDER label is found,
the pre-condition is not verified

WITH NOT COUNT(*) > 0 AS Eval

184

Di Maro et al. Cutting melted butter?

// If available, find a preceding version of the POWDER
PERCEIVED_ELEMENT that did not have the POWDER label

MATCH (a1:ACTION)-[:REFERS_TO]->(e:ENTITY)-[:ASSIGNED_TO]->(fe:
FRAME_ELEMENT {name: 'Patient'}),

(e)-[:REFERS_TO]->(pe1:PERCEIVED_ENTITY)
WHERE NOT (a1)-[:IS_FOLLOWED_BY]->()
WITH Eval, pe1, a1
OPTIONAL MATCH (pe1)-[:CREATED_FROM*]->(pe2:PERCEIVED_ENTITY)<-[:

REFERS_TO]-(:ENTITY)<-[:REFERS_TO]-(a2:ACTION)-[:IS_A]->(:
FRAME_INSTANCE)-[:INSTANCE_OF]->(f:FRAME)

WHERE a1 <> a2 AND NOT 'POWDER' IN labels(pe2)

// Return the necessary information to build the HNPQ if a previous
ACTION caused the PERCEIVED_ENTITY to acquire the POWDER label

RETURN Eval, COLLECT(ID(a2))[0] AS ConflictingAction,
pe1.name + ' Ãĺ in polvere.' AS NLExplanation,
COLLECT(f.name)[0] AS ConflictingFrame,
COLLECT(pe2.name)[0] AS OriginalEntity

//Condition 3: Verify that the involved PERCEIVED_ELEMENT is not a
LIQUID

UNION
// Get the last ACTION, the ENTITY nodes it refers to, the

PERCEIVED_ELEMENTs they REFER_TO and having the LIQUID label
// and the FRAME_ELEMENTs of type "Patient" ENTITY node are ASSIGNED_TO

.
MATCH (a1:ACTION)-[:REFERS_TO]->(e:ENTITY)-[:ASSIGNED_TO]->(fe:

FRAME_ELEMENT {name: 'Patient'}),
(e)-[:REFERS_TO]->(pe1:PERCEIVED_ENTITY)
WHERE NOT (a1)-[:IS_FOLLOWED_BY]->() AND 'LIQUID' IN labels(pe1)

// If at least one PERCEIVED_ELEMENT with the LIQUID label is found,
the pre-condition is not verified

WITH NOT COUNT(*) > 0 AS Eval

// If available, find a preceding version of the POWDER
PERCEIVED_ELEMENT that did not have the LIQUID label

MATCH (a1:ACTION)-[:REFERS_TO]->(e:ENTITY)-[:ASSIGNED_TO]->(fe:
FRAME_ELEMENT {name: 'Patient'}),

(e)-[:REFERS_TO]->(pe1:PERCEIVED_ENTITY)
WHERE NOT (a1)-[:IS_FOLLOWED_BY]->()
WITH Eval, pe1, a1
OPTIONAL MATCH (pe1)-[:CREATED_FROM*]->(pe2:PERCEIVED_ENTITY)-[:

CREATED_BY]->(a2:ACTION)-[:IS_A]->(:FRAME_INSTANCE)-[:INSTANCE_OF
]->(f:FRAME)

WHERE a1 <> a2 AND NOT 'LIQUID' IN labels(pe2)

// Return the necessary information to build the HNPQ if a previous
ACTION caused the PERCEIVED_ENTITY to acquire the LIQUID label

RETURN Eval, COLLECT(ID(a2))[0] AS ConflictingAction, pe1.name + ' Ãĺ
un liquido.' AS NLExplanation,

COLLECT(f.name)[0] AS ConflictingFrame, COLLECT(pe2.name)[0] AS
OriginalEntity

Listing 4

Cypher query checking the pre-conditions of the Grinding frame.

185

Italian Journal of Computational Linguistics Volume 7, Number 1-2

Appendix B

Table 4

Frame structures with features and sub-entities.

Frame

elements

Sub-

Entities
Features

Frame

elements

Sub-

Entities
Features

A
pp

ly
he

at

Temperature
setting

- Temperature

C
au

se
to

am
al

ga
m

at
e Parts - Ingredient

Heating
instrument

-
Cooking

appliance
Whole - Ingredient

Food -
Container Means - Tool
Ingredient

Place
- Container

Container -
Cooking

instrument -
Cooking

instrument
Duration - Duration

C
au

se
to

be
in

cl
ud

ed

Existing
member

- Ingredient

C
ut

tin
g

Item - Ingredient

Place - Container
Pieces

Quantity Number
New

member
- Ingredient

Size Dimension
Shape -

Group - Ingredient Instrument
Size Dimension
Tool Tool

D
un

ki
ng Substance

- Container

G
ri

nd
in

g Instrument - Tool
- Ingredient

Patient - Ingredient
Theme - Ingredient

Pl
ac

in
g

Theme
- Container

R
em

ov
in

g

Source

- Container

-
Cooking

instrument
-

Cooking
appliance

- Ingredient
-

Cooking
instrumentArea - Container

Source
- Container

Theme

- Container

-
Cooking

appliance -
Cooking

instrument
-

Cooking
instrument

Means - Tool
- Ingredient

Duration - Duration

R
es

ha
pi

ng

Instrument - Tool

Se
pa

ra
tin

g Whole - Ingredient
Patient - Ingredient Parts - Ingredient

Result - -
Instrument - Tool

Place - Container

186

Di Maro et al. Cutting melted butter?

Table 5

Conflict Search Graph Results and Outcomes

Recipe Result Expected

Result

Outcome

Besciamella 3 3 OK
Carbonara 10 10 OK
Cestini ripi-
eni

7 7 OK

Crocchette 5 5 OK
Pancakes 5 1 KO
Patate al
forno

4 4 OK

Piadina
romagnola

2 1 KO

Pizzette
rosse

3 3 OK

Polpettine di
tonno

5 4 KO

Tiramisú 6 6 OK
Gnocchi 6 6 OK
Guacamole 6 6 OK
Hamburger
di ceci

5 5 OK

Mousse al
cioccolato

9 9 OK

Plumcake 1 1 OK
Polpette di
zucchine

5 5 OK

Sformato di
verdure

7 7 OK

Torta Tener-
ina

6 6 OK

Zucchine
alla scapece

4 4 OK

Zuppa 7 7 OK

187

Italian Journal of Computational Linguistics Volume 7, Number 1-2

Appendix C

188

Figure 6

Slides representing the sequence of actions for the Pancake recipe. The conflicting
quantity-related action (Melt the butter in the saucepan) is in red; the action that cannot be
performed because of the conflicting one (Put a little bit of butter in the pan) is surrounded by
dashed lines; the conflict is signalised with a High Negation Polar Question in the last slide
(Didn’t I have to melt the butter in the saucepan?)

189

190

