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Lost in Text: A Cross-Genre Analysis of
Linguistic Phenomena within Text

Chiara Buongiovanni* Francesco Gracci™

Universita di Pisa Universita di Pisa

Dominique Brunato! Felice Dell’Orlettat

Istituto di Linguistica Computazionale Istituto di Linguistica Computazionale
“Antonio Zampolli” (ILC-CNR) “Antonio Zampolli” (ILC-CNR)
ItaliaNLP Lab ItaliaNLP Lab

Moving from the assumption that formal, rather than content features, can be used to
detect differences and similarities among textual genres and registers, this paper presents a new
approach to linguistic profiling — a well-established methodological framework to study language
variation — which is applied to detect significant variations within the internal structure of a
text. We test this approach on the Italian language using a wide spectrum of linguistic features
automatically extracted from parsed corpora representative of four main genres and two levels
of complexity for each, and we show that it is possible to model the degree of stylistic variance
within texts according to genre and language complexity.

1. Introduction

The combination of corpus-driven and Natural Language Processing (NLP)-based ap-
proaches to study language variation and use from a stylistic and sociolinguistic per-
spective has become an established line of research. The heart of this research is the
so-called ‘linguistic profiling’, a framework of analysis in which a large number of
counts of linguistic features extracted from linguistically annotated corpora are used
as a text profile and can then be compared to average profiles of texts (or groups of
texts) to identify those that are similar, at least similar in terms of the profiled features
(van Halteren 2004; Montemagni 2013). Although it has been originally developed for
authorship verification and recognition, i.e. to select one author from a set of known
authors or to confirm or deny authorship by a single known author, this methodology
has been successfully applied to research on genre and register variation, as well as in a
variety of scenarios focused on modeling the ‘form’ rather than the content of texts: from
the identification of developmental patterns in typical (Lu 2009; Lubetich and Sagae
2014) and atypical language acquisition (Prud’hommeaux et al. 2011; Rouhizadeh,
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Sproat, and van Santen 2015) and in school learners” writing (Barbagli et al. 2015), to
the detection of linguistic markers of adult cognitive impairments (Roark, Mitchell,
and Hollingshead 2007); besides, from a computational sociolinguistics perspective, for
studying variations related to the social dimension of language (Nguyen et al. 2016) or
for modeling stylometric characteristics of authors or author groups (Daelemans 2013).

The assumptions of linguistic profiling lay in the framework of the Multi-
Dimensional Analysis (MDA) pioneered by Douglas Biber, a text-linguistic approach
to characterize language use across social and communicative contexts through the
quantitative and functional analysis of co-occurrence patterns of linguistic features
and underlying dimensions of language use (Biber, Conrad, and Reppen 1998). The
important hallmark of MDA is that “linguistic features from all levels function together
as underlying dimensions of variation, with each dimension defining a different set
of linguistic relations among registers” (Biber 1993). This set of features should capture
properties of text that are ‘signatures’ of its style rather than the topic it deals with, since
they are more appropriate to investigate differences and similarities between texts from
a functional perspective. Since its foundation, MDA has also aimed to be “computer-
based in that it depends on automated analyses of linguistic features in texts. This
characteristic enables distributional analysis of many linguistic features across many
texts and text varieties”. However, as Argamon observes in its recent survey, traditional
research in computational register analysis has exploited a limited number of stylistic
features, such as the relative frequencies of function words, taken as indicative of
different grammatical choices rather than topic ones, or of character n-grams assumed
to model linguistic variation in lexical, grammatical, and orthographic preferences
(Argamon 2019). This is easily explainable as these features are simpler to extract from
text than more sophisticated syntactic and discourse features, yet effective enough to
capture dimension of variations. In fact, if function words require language-specific lists
of a few hundred words (such as pronouns, prepositions, auxiliary and modal verbs,
conjunctions, and determiners), character n-grams do not need any form of language-
specific preprocessing, not even tokenization, which instead might be necessary for
word n-grams.

More recently, the development of robust and fairly accurate NLP pipelines together
with the increased computational power to process large volumes of data has allowed
to automatize the process of feature extraction from large-scale corpora, enhancing
the potential contribution of linguistic profiling for studying language variation. By
modeling the ‘form” of a text through large sets of features spanning across distinct
levels of language description, it has been possible not only to improve automatic clas-
sification of genres (Stamatatos, Fakotakis, and Kokkinakis 2001), but also to get a better
understanding of the impact of those features in classifying genres and text varieties
(Cimino et al. 2017; Finn and Kushmerick 2006). This paper adopts this framework
but, quite differently from much previous research, it presents a new application of
linguistic profiling, in which the unit of analysis is not the document as a whole entity,
but the internal parts in which it is articulated. A close perspective has been pursued by
(Crossley, Dempsey, and McNamara 2011) but with a different aim, i.e. the automatic
discrimination of paragraphs with a specific rhetorical purpose in English students’
essays by using a feature engineering approach. In our contribution, we focus on the
Italian language and we broaden the scope of the analysis to four traditional textual
genres and two levels of linguistic complexity for each. Briefly, this paper intends to
answer the following research questions:

i) to what extent is NLP-based linguistic profiling a viable approach to characterize
the internal structure of a text?
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ii) does the variance across different parts of a text change according to genre and
level of complexity?

In what follows we first present the corpora on which the study was carried out
and then move to the presentation of the approach, together with the description of
the linguistic features used for analysis. In Section 5, we discuss the main findings we
obtained and outline the primary conclusions.

2. Corpora

Our investigation was carried out on four traditional genres: Journalism, Educational
material, Scientific prose and Narrative. For each genre we selected the two corpora
described in (Brunato and Dell’Orletta 2017), which represent a ‘complex” and a ‘simple’
language variety for that genre, where the level of complexity was established according
to the expected reader. Specifically, the journalistic genre comprises a corpus of articles
published between 2000 and 2005 on the general newspaper la Repubblica and a corpus
of easy-to-read articles from Due Parole, a monthly magazine written in a controlled lan-
guage for readers with basic literacy skills or mild intellectual disabilities (Piemontese
1996). The corpus belonging to the Educational genre is articulated into two collections
targeting high school (AduEdu) vs. primary school (ChiEdu) students. For the scientific
prose, the ‘complex’ variety is represented by a corpus of 84 scientific articles on differ-
ent topics, while the ‘simple” one by a corpus of 293 Wikipedia articles, extracted from
the Italian Portal ‘Ecology and Environment’. For the Narrative genre, we relied on a
dataset specifically developed for research on automatic text simplification. It consists of
56 short novels for children and pieces of narrative writing for L2 high school students
arranged in a parallel fashion, i.e. for each original text a manually simplified version
is available. For our investigation, the original texts and the corresponding simplified
versions were chosen as representative of the complex variety and the simple variety of
Narrative, respectively.

All these corpora contain documents which are very different in terms of length:
for instance, scientific articles are on average longer than others (215 sentences per
document) and this reflects the fact that the body part is more dense and possibly
articulated into more middle paragraphs. On the contrary, the easy—to-read newspaper
articles (i.e. Due Parole) are made of ~12 sentences. Thus, for each document, we also
defined an internal subdivision into six parts intended to enable the linguistic profiling
investigation on the internal structure of text. The rationale of the splitting approach
is outlined in the following section. As a result, we ended up with six sections per
document, where each section is composed by a number of sentences that depends on
the average document length, ranging from two sentences per section for the shortest
documents, to ~35 for the longest ones. Moreover, according to this approach, docu-
ments shorter than six sentences were discarded. As a result of the whole process, the
final corpus is made of 1,168 documents. Table 1 reports general statistics about the
final dataset in terms of: number of documents in each corpus, corpus size in number of
tokens, average number of sentences per document and average number of sentences
per section in each corpus.

3. Methodology

As a first step we focus on inspecting differences and similarities across all corpora
considering the document as the unit of analysis. This is a more traditional perspective
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Table 1
Corpus statistics (“c” and “s” stand for ‘complex” and "simple’ variety for each genre.)
Genre Corpus N.doc Tokens Sent/doc Sent/sect
. ¢ High-school texts (AduEdu) 69 47854 234 39
Educational ! _
s Primary school texts (ChilEdu) 52 22382 21.0 35
. ¢ la Repubblica articles (Rep) 304 230.789 30.5 5.1
Journalism -
s Due Parole articles (2Par) 303 71228 12.7 2.1
. ¢ Terence&Teacher original (TT orig) 53 25931 253 42
Narrative . —_
s Terence&Teacher simplified (TT 54 23.866 25.5 4.3
simp)
Scientific articles (ScientArt) 84 471.883 215.6 35.9

Scientific prose

Wikipedia articles (WikiArt) 249 200.681 29.1 49

to address linguistic profiling and it is useful to provide quantitative and quality data
on the average variation across the examined genres and internal level of complexity.

To carry out this analysis all corpora were firstly automatically tagged by the part-
of-speech tagger described in (Dell’Orletta 2009) and dependency parsed by the DeSR
parser (Attardi et al. 2009). DeSR, trained on the ISST-TANL treebank (Montemagni et
al. 2003) consisting of articles from newspapers and periodicals, achieves a performance
of 83.38% and 87.71% in terms of Labeled (LAS) and Unlabeled Attachment Score (UAS)
respectively, when tested on texts of the same type. However, it is widely acknowledged
that even state—of-the art parsers have a drop of accuracy when tested against corpora
differing from the typology of texts on which they were trained (Gildea 2001). Therefore,
we can assume that the performance of DeSR would be possibly lower when parsing
texts of a different textual genre, such as narrative or scientific writing. Despite this
fact, we also expect that the distributions of parsing errors will be almost similar, at
least when analysing texts of the same domain and language variety, thus allowing us
to carry out an internal comparison with respect to examined linguistic parameters.
Besides, the effect of genre variation on the performance of general-purpose parsers is
likely to be less strong since all genres here considered contain standard texts, i.e. texts
linguistically similar to the ones used in training.

Based on the output of the different levels of linguistic annotation, we automati-
cally extract from text a wide set of linguistic features, thus creating a feature-vector
representation of each document, where each dimension of the vector corresponds to
the average value of a given linguistic feature in the document. The set of features used
in our study, and the motivation underlying their choice, are described in the following
section.

For what concerns the second analysis, which is the most innovative perspective of
this study, we looked at the internal structure of documents and we investigate how the
same linguistic features vary across different sections of text. To allow this investigation
we firstly defined the ‘new” unit of analysis as follows. All documents were split into
a fixed number of sections, where each section is composed by a certain number of
paragraphs, roughly corresponding to the three main parts of the rhetorical structure of
a text (i.e. introductory, body and concluding paragraphs). According to previous work,
for some genres such as academic writing, the distinction into paragraphs is quite rigid
and follows the so-called ‘five-paragraphs’ format (Crossley, Dempsey, and McNamara
2011) which adheres to the rhetorical goals of the document, i.e. the first and the last
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paragraph correspond respectively to the introduction and the conclusion, and the three
middle ones to the body part. However, based on a preliminary investigation of our
corpora showing that the average document length is highly variable, we preferred to
define a six-section subdivision in order to avoid flattening too much the distinctions
across genres.

Finally, we performed the feature extraction process, this time representing each
section of a document as a vector of features, whose values correspond to the average
value that each linguistic feature has in all sentences included in the section.

To understand whether and to what extent the different sections of a text represent
distinctive varieties with a peculiar linguistic structure, we carried out two statistical
analyses. The first one aimed to assess the significance of variation between the same
features extracted from different sections. Specifically, we performed a pairwise com-
parison between each section and the following one (i.e. 1/2, 2/3, 3/4 etc), as well as
between the first and the last section (i.e. 1/6). The latter was aimed at verifying whether
our set of features alone is able to distinguish between the introductory and the closing
part of a document, the two most distant sections of a text which are supposed to have a
more codified structure. Secondly, we evaluated whether there is a correlation between
the values of features in the two sections under comparison. For both analyses, all data
were calculated across and within genre. The cross-genre analysis was focused on genre
only, thus collapsing the internal distinction in terms of complexity and considering
the two corpora as a unique one for each genre. In the within-genre condition, the two
corpora were kept distinct thus allowing us to observe whether there is an effect of genre
that is preserved despite changes in linguistic complexity.

4. Linguistic Features

The set of features used for our analysis models a variety of phenomena related
to the sentence structure, with a particular focus on morpho-syntactic and syntactic
properties. These features were selected since they proved to be effective predictors of
systematic variations in automatic genre classification (Cimino et al. 2017), as well as
in other tasks in which the ‘form’ of the text is more relevant than the content, such
as the prediction of perceived sentence complexity by humans (Brunato et al. 2018),
the assessment of text readability (Collins-Thompson 2014) or the identification of the
native language of speakers from their productions in a second language (Malmasi et
al. 2017).

The features can be distinguished into three different categories, according to the
level of annotation from which they derive.

Raw Text Features: they include the average word and sentence length (word_length
and sent_length in Tables 2 and Tables 3), calculated as the number of characters per
token and of tokens per sentence, respectively.

Morpho-syntactic Features: i.e. distribution of unigrams of part-of-speech distin-
guished into 14 coarse-grained pos tags (cpos_) and the 37 fine-grained tags (pos_)
according to the ISST-TANL tagset.

Syntactic Features: features modeling syntactic phenomena of different types, i.e.:
- the distribution of syntactic dependency types (dep_), e.g. subject, direct object, modifiers,
calculated as the distribution of each typed out of the total dependency relations ac-
cording to the ISST-TANL dependency tagset;

- the length of dependency links, i.e. the average length of all dependency links (avg_links_I)
and of the longest link (max_links_I). For each link, the distance is calculated as the
number of words occurring between the syntactic head and the dependent;
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ROOT
punc
subj mod rel mod tem
mod mod sub det
J sub ’_‘j com fﬂﬁ J comp \ mod com fﬁﬁ aux det
Come gird paginaresto  senza fiato perché c' era unaxecchla fotografia della naxecheaxe&a usto la sera puma .
B Vv S ' E S cs PC V. RI A S EA S PR VA

Figure 1
Graphical representation of the annotated sentence in (1).

- the order of constituents with respect to the relative lexical head: this feature works
as a proxy of canonicity effects and it is calculated for the main elements of the
clause in terms of: the distribution of pre-verbal and post-verbal subjects (pre_subyj,
post_subj), of pre-verbal and post-verbal object (pre_obj, post_obj), of pre-nominal and
post-nominal adjectives (pre_adj, post_adj), and of pre-verbal and post-verbal adverbs
(pre_adv, post_adv);
- the parse tree structure, in terms of features corresponding to: the average depth of the
whole parse tree (parse_depth) (i.e. the longest path from the root of the dependency
tree to a leaf); the average width of the parse tree (parse_width), where the width is
measured as the average number of nodes placed on the same level; the average number
of dependents for all heads in the sentence (avg_dep_all), for the verbal heads and for the
nominal heads (avg_dep_verb, avg_dep_noun);
- subordination features: a thorough analysis was devoted to investigate the use of subor-
dination by computing: the average distribution of subordinate clauses with respect
to the main clause (sub_main) and of embedded subordinate clauses (i.e. subordi-
nate clauses dependent on other subordinate clauses) out of all subordinate clauses
(sub_minor). In addition, both for the ‘superordinate” subordinate clause and the em-
bedded ones, it is calculated the relative order with respect to the clause on which they
depend (pre_sub, post_sub), as well as the average depth (subord_depth) and the average
width (subord_width) of the parse tree generated by the subordinate clause.

To exemplify some of the above-described features, we refer to the following sen-
tence extracted from the Narrative corpus, whose graphical visualization is reported in
Figure 1.

(1) Come gird pagina restd senza fiato perché c’era una vecchia fotografia della nave
che aveva visto la sera prima.

The sentence has a length of 21 tokens (punctuation included) and the average
word length is 4.62 characters. For what concerns the POS distribution, it presents
e.g. an equal distribution of verbs and nouns, each one corresponding to the 23.81%
of the whole POS. With respect to syntax-related features, the average length of de-
pendency links is 1.84 and the maximum link (excluded punctuation) is 5-token long
(corresponding to the mod_rel dependency going from the nominal head ‘fotografia’ to
the embedded verb of the relative clause ‘visto’). The maximum parse tree depth is 6,
corresponding to the longer path, in terms of number of intervening nodes, from the
root of the sentence (‘restd’) to the more distant leaf, the definite article ‘la’.
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5. Data Analysis
5.1 Differences and similarities across genres and complexity

Table 2 reports the average value and standard deviation of all examined linguistic
features in the four corpora considered as a whole, as well as considering the ‘simple’
and ‘complex’ sub—corpora as distinct varieties. Along with the mean and standard
deviation value, we also compute the coefficient of variation, which corresponds to the
ratio between the standard deviation and the mean value of the feature. This measure
allows us to evaluate the dispersion of values around the average in a standardized
way, that is comparing the stability of features pertaining to data measured on different
scales. The assumption in exploiting this metric is that the more stable a feature in
a given corpus, the more meaningful it is for characterizing it. Of course, we expect
that features with the lowest coefficient of variation identify general tendencies of a
language, in this case of Italian. However, the effect of genre and language variety can
be inferred by the different positions that these ‘most stable” features have in the ranking
of each corpus. With this respect, in Table 2 we also indicate the first ten features ranked
according to the coefficient of variation for each corpus.

A first comparison across corpora based on the average feature value shows some
expected tendencies, such as the highest sentence and word length characterizing
scientific prose, also in the simple variety. Both these features are considered as raw
indicators of sentence complexity and they are used by traditional indexes to evaluate
the readability of a text (Collins-Thompson 2014). Focusing on the relative frequencies
of core parts of speech, which is traditionally used as a marker for text genres (Biber,
Conrad, and Reppen 1998), we can also note that scientific and journalistic texts use
more nouns and less verbs in comparison to other genres, a marker of the nominal
style featuring these texts. The opposite holds true for the narrative prose, which indeed
has the lowest noun/verb ratio. Note that with the only exception of sentence length,
all these parameters occur among the ten most stable ones in almost all genres and
varieties, with the average word length always in the top two positions. The distribution
of nouns is much prone to variation, especially in Narrative.

If we consider features modeling the syntactic profile of text, we can observe that
Scientific articles again display values typically reported in readability studies to de-
scribe difficult-to-read texts, such as deeper parse tree. If this is particularly evident in
the complex variety of this genre (where the average parse tree depth is 8.71), we can
observe that also the simple one (i.e. Wikipedia articles) shows values that are much
more higher than those reported by the simple varieties of all other genres. However, if
scientific prose appears as the most difficult genre when sentence length and parse tree
height are taken into account, it presents e.g. less complex verbal predicates in terms
of number of dependents for verbal head (avg_dep_verb). With respect to this feature,
Educational texts are those with the richest predicate structures, both in the easy and
complex variety (2.16 and 2.25 respectively).

5.2 Studying the internal structure of text

We now focus on discussing the results of linguistic profiling carried out for the dis-
tinct sections of corpora, which were extracted according to the procedure described
in Section 3. More specifically, to characterize the degree of variation within the dif-
ferent parts, and to evaluate how this variance derives from either genre-related or
complexity-related features, we calculated two different statistical tests: i) the Wilcoxon
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Table 2

An extract of linguistic features used for linguistic profiling across genres and complexity levels.
For each feature it is reported the average value and (standard deviation) in the whole corpus
(g), in the ‘simple’ (s) and in the ‘complex” subcorpora (c). Values marked with exponent " mean
that the corresponding feature is more stable for that corpus according to the coefficient of
variation. The exponent index indicates the rank that these features have in the top ten positions
of the ranking derived by the coefficient of variation.
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features

Journalism

Scientific Prose

& 5 c &

S

Raw text features

275 1898 2651 2775 2629 3205
sent_length (1139)  (7.65) (1313) (13.63) (13.96) (11.62)
4617 458 4642 507 5050 513

word_length 05) (052 (047) (062  (0.64) (057

Morpho-syntactic features

621 6.1 632 863 858 83

cpos_ADJ 459)  (477)  (44)  (507) (559  (3.09)
447 375 519 355 357 349

cpos_ADV (387)  (405) (355  (286) (314)  (1.8)
349 352 346 321 322 319

cpos_CONJ 293) (332 (249) (232 (251)  (1.63)
epos PREP 1517 1483 155 1520 1464 1606
~ (556) (594 (5.13) (5.63) (5.92)  (452)
544 549 539 399 443 254

pos PROPN 612) (639 (519 (807)  (9.04)  (3.59)
253 2351° 2156 26040 2607 25942

pos NOUN 63) (632 (614  (73) (79  (4.93)
1093 1129 1057 808 798 837

pos_VERB 452) (48 (418 (376) (396)  (3.06)

Syntactic features

dep_dob 418 491 345 243 238 258
-~ 333)  (387) (248) (194 (214  (12)
dep.sul 519 596 441 351 361 322
s 315) (353 (251) (222)  (244)  (1.86)
dep mod 167 1651 169 18815 1835  20.18"
— ©63) (735 (81) (715  (7.62) (5.9
g depnoun L0 LI¥ LI 12 119 1ap
—dep_ 032) (033  (03) (034 (035  (0.3)
g depved | 200 27 198 1790 1780 18l
—dep_ ©061) (058 (062) (071)  (0.75)  (0.61)
avg dep.al 0921 0921 0911  085% 085 086"
—dep_ 0.05) (003 (0.07) (0.18) (0.18)  (0.19)
v links 1 2074 200F 2130 208 2037 215
links_ 049) (049 (047) (067) (071)  (052)
6870 6260 750 783 7560 87T°

parse_depth @24)  (171)  (251) (26 (26  (241)
: 495 4840 508 527 518 556
parse_width (158) (145 (1.68) (2020 (214) (157)
itk pre 3639° 3751° 3529 2677 2712 2574
- (10.04) (1046) (948) (11.29) (1235)  (7.19)
lrdk_post 6282 6220 6344 6595 6592 66,06
- (1017)  (1049)  (98)  (1609) (17.01) (12.99)
sabord. depth 286 233 341 34 321 403
~ 222) (13 (218) (214 (225)  (1.63)
cubord width 159 13 189 186 179 211
= (129)  (128) (1.23) (124) (1.33)  (0.9)

b 4729 455 495 47 4589 5047
— (3276) (37.25) (2729) (27.86) (3023) (18.61)
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Narrative Educational
g s c g s c
Raw text features

1899 1762 204 2802 2279  31.96
(7.69)  (62)  (892) (1325 (1052) (13.73)

4277 422U 433% 455 433 4727
(0.43) (042) (044) (053) (0.5 (0.5)

Morpho-syntactic features

features

sent_length

word_length

epos AD] 62 61 629 801 683 891
- @47)  (476) (466)  (429)  (408)  (424)
cpoe ADV 652 65 654 604 603 605
- 423)  (426) (@421) (38)  (421) (347)
cpos. CON] 524 531 516 456 417 486
- 297) (296 (298 (261) (276)  (2.45)
cpos PRED 1206 1186 1228 1421 1336 1485
- 486) (496) (474 (47 (53) (41

49 2 47 17 22 14
pos_PROPN (4.93) (?12) (4.84) (2.72) 3.11) (2.4?)
1793 1807 1778 2133° 2085  21.69°

pos NOUN (5.93) (383) (5.92) (5.3%) (06.815) (4.64)
14370 1450 1424  1211° 1318 1131
pos_VERB 489) (48)  (499) (3.89)  (426) (337

Syntactic features

dep.dob 153 466 439 378 393 367
: 295) (307) (283) (26 (31 (216
dep.s 617 642 592 524 564 494
- 322) (326 (317) (266 (29) (242
dep mod 1505 1476 1535 1646 1523 1740

623) (611 (634  (5.6)  (618)  (4.94)

avg_dep_noun 1.09 1.06 1.13% 1.298 1.210 1.35°
B-cep- (038)  (036) (039 (037) (043  (03)

avg_dep_verb 2.1° 2.12¢ 2.09° 2.21° 2.16° 2.257
&-aep- (059 (058  (06) (054  (056)  (0.52)

ave dep all 0.89? 0.89? 0.91 0.93! 0.91! 0.94!
8-ceb- (0.09) (0.09) (0.08) (0.05) (0.05) (0.05)

20 1974 2066 222 208° 233
048) (047) (049 (053) (055  (0.48)
6287 6025 6540 7615 6445 845
parse_depth (1.86)  (164) (2.03) 256  (1.89)  (2.7)
45 433 4685 562 498 608
(137)  (122) (149 (02 (1.89)  (2.02)
38650 3892° 3839° 3656/ 39277  3452°

avg_links_1

parse_width

link_pre (1143) (1123) (11.63) (©924) (975  (827)
ik post 59810 5929 6033  6252° 5955 6485

s (1211)  (1204) (1217)  (953) (1014)  (8.36)
sabord_depth 279 256 303 357 281 42

- (171) (164 (175  (219)  (1.88)  (2.24)

156 141 17 215 164 256

subordwidth (105 1) @09 (14 (12 (14D

50.76 48.68 52.89 54.53 52.07 56.43

sub_main (2892) (29.41) (2831) (28.6) (31.87) (25.22)
sub minor 892 7 112 1274 894 16.27
- (135  (11.1)  (7.37) (1552) (13.78)  (16.6)
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rank-sum test and ii) the Spearman’s correlation test. As previously stated, each metric
was calculated between the average value of features extracted from two consecutive
sections and from the first and the last section of each document. Results of this com-
parison are reported in Table 3, which displays all features that turned out to have a
statistically significant variation in at least one of the six pairwise comparisons, or a
correlation score > 0.3 according to the Spearman’s correlation coefficient.

As a first remark, we clearly notice that a higher number of features varying in a sta-
tistically significant way occurs in the journalistic and scientific genre, both considered
as whole (i.e. row g for each feature) and with respect to the language complexity variety
(rows s and c). The opposite trend is reported for texts of the Educational domain, which
is probably due to the heterogeneous nature of this genre that includes documents of
different textual typologies (course books, pieces of literature etc.).

If journalism and scientific prose are the two genres with the highest internal
variance, the comparison between sections allows us to get a better understanding of
this data. Specifically, for both genres, the majority of significant variations are observed
between the first and the second section and between the first and the last one. This
suggests that the introduction is a stylistic unit with a peculiar linguistic structure with
respect to the body and the conclusion. For instance, it is characterized by shorter
sentences (Figure 2), likely due to the presence of the title in both newspaper and
scientific articles, and by a distinctive distribution of Parts—of-speech (Figure 3). With
this respect, this data is consistent with other studies in the literature, e.g. (Voghera
2005), and also with what we observed in the global analysis of our corpora reported
in paragraph 5.1, showing that scientific prose and newswire texts rely more on the
nominal style. However, with the proposed approach, we were able to go further in
this analysis, highlighting that noun/verb ratio is always higher in the first section
than all other ones. Besides, at least for newspaper articles, this feature appears as a
genre marker which is not affected by language complexity, since the same tendency is
observed when the ‘simple” and the ‘complex’ corpus are analyzed independently. The
same does not hold for other features related to syntactic structure and, in particular,
to the use of subordination. In this case, the ‘shift’ between the introduction and the
subsequent part of texts yields significant variations only for articles of la Repubblica.
Specifically, the first section contains less embedded sentences (parse_depth: 1% section:
5.55; 2" section: 7.76), and a lower presence of subordinate clauses, which appear as
structurally simpler e.g. in terms of depth (subord_depth: 1% section: 1.67; 2" section:
3.5) and width (subord_width: 1% section: 0.94; 2"¢ section: 1.97). Conversely, for the
simple variant of this genre (i.e. the articles of the easy-to-read newspaper Due Parole),
we do not observe significant changes affecting these features: this is not particularly
surprising since subordination is always less represented in this corpus with respect to
all the other ones (as reported in Table 2, the distribution of subordinate clauses with
respect to the main clause (sub_main) is 45.5.)

Leaving aside the similar tendencies characterizing the introduction, Journalistic
and Scientific prose show a different behavior when we focus on the internal structure
of text. While in this case much fewer features vary in a significant way, the majority
occurs in the journalistic genre only, especially between the second and the third sec-
tion. Again, they concern a different distribution of morpho-syntactic categories but
also some syntactic features related to the hierarchical structure of the parse tree (e.g.
parse_width, avg_dep_all) and to the presence and level of embedding of subordinate
clauses (subord_depth, subord_width). According to these data, we can conclude that the
journalistic genre has a more rigorous structure and that it is possible to capture the
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‘O Journalism O Educational < Scientific Prose ‘O Narrative

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6

Figure 2
Average sentence length in the 6 sections across genres.

Journalism Scientific

35 35
30 30
25 25
20 20
15 15
10 10
5 5
o o

Section1  Secton2  Secton3  Secton4  Section5  Section 6 Section1  Section2  Section3  Section4  Section5  Section 6

M cpos_ADJ [l cpos_ADV [l cpos NOUN M cpos_VERB M cpos_ADJ I cpos_ADV I cpos_NOUN M cPOSs-v
Narrative Educational

35 35
30 30
25 25
20 20
15 1%
10 10
5 5
o

Section1  Section2  Section3  Secton4  Section5  Section 6 Section1  Section2  Section3  Section4  Section5  Section 6

M cpos_ADJ W cpos_ADV 1 cpos_NOUN M cpos_VERB M cpos_ADJ I cpos_ADV 1 cpos_NOUN M cpos_VERB

Figure 3
Distribution of lexical parts-of-speech in the four genres.

boundaries between different parts by using linguistic features that are not related to
the content of the article.
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Table 3

A set of linguistic features resulting as significant in at least one pairwise comparison. v'v’
means highly statistically significant (p < 0.001), v statistically significant (p < 0.05), - no
significance; * correlation related to the Spearman’s rank correlation coefficient (tho > 0.3),
g=global corpus, s=simple variety of the corpus, c=complex variety of the corpus.
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features Journalism \ Scientific Prose
1/2 2/3 3/4 4/5 5/6 1/6 | 1/2 2/3 3/4 4/5 5/6 1/6
Raw text features

g VvV Vx -x -x -x YV VY - - % -k VY

sent_length s vV - - - - - Vv - - B B V¥4
C vV - -k -k -k vV -k - % - % - x - x - x

g - % -k - % - % - % v v - - % - % - v
word_length s -x - % % - % - vV v - % B B Vav4
c - - % - % - % - % - - % Vi o -x - % - % - %

Morpho-syntactic features

g - - - - - - v v - % - - *

cpos_ADJ s v - - - - - vV - % - B Ve
C v - - - - v - - % - % - % - % - %

g VVx  Vx - - - VY Ve - - -k - VY

cpos_ADV s VvV - - - - vV |V x - - B B Vav4
c VvV - % - - - vV - % - x - % - % —x - x

g vV v - - - Vo vV - - - - vV

cpos_CON] s vV - - - - v v - - - EEVavS
c vV - - - - vV Vo - % - % - % ~ % V %

g VvV Vo - % - % - % vV vV - - % - Vv

cpos_ NOUN s V' - % - - - % vV vV - - - - Va4
c VvV VVx  -x - % - % vV - % - % -k =% -% - %

g VvV -x -k -k -k VR | VY -k -k Vx -x VY
pos_PROPN s v V'x ) - % — % -x Vx| VY - % T x T x % IV
C vV vV - -k - vV -k - % - % - % - % - %

g vV v - - - Vo vV - - - - Va4

cpos_VERB s VvV - - - - vV vV - - - - vV
c Va4 vV - - % - % vV - % — % % “x “x T x

g v x VEs - % - % - % v e _ _ _ _ Va4

pos_AUX 5 -x - % -k -% - - vV - - - EEVAVS
c VVx VVx o -x - % - % vV ~ % - _ % _ T x

Syntactic features

g v v - - - vV vV - - - - vV

dep_dobj S - v - - - vV vV - - - - Va4
C Vava - - - - vV - % - % - % - % - % - %

g - - - - - Vv - - - - vV

dep_subj s - - - - - - YV E B . VeV
C v - - - - vV -k - % - % - % - % - %

g vV - Vr o =% - Vo vV - - - % - vV

max_links 1 s vV - - - - v vV - - - - Vava
c Vv - v - % - vV - % - % - % - % - x - x

g vV - v - - Vo VY - - - - vV

avg_links_l 3 v - - - - - Vv - - - B Vav4
c Vv - v - - v - % - % - % - x - x -

g vV -k -k o-x -k YV | VY - - - Vi VY

parse_depth s - - - - v Va4 - - % VY
c VvV - - % - % - % vV - % - % - % - % - x - x

g vV v - - - V| VY - - - - vV
parse_width s vV - - - - - Va4 - - - VS
c vV - v - % - vV - % - % - % - % - x - %

g vV v - % - % -k vV Vs - % -k -%x vk VY

avg_dep_all s Vv - - -k - V - B B - VY
c VvV v - % - % - % vV - % % % -%x  -x —x

Subordination features

g vYv Y - - TR - - VY
subord_depth s - - - - - v vV - - - - vV
c Vv - - - - vV - % - % - % - % - x - %

g vV v - - - vV vV - - - v Y
subord_width s - - - - - v vV - - - - Va4
c Vv - - - - vV - % - % - - % - % - %

g VvV v - - - vV vV - - - - vV

sub_main s - - - - - vV vV - - - - Va4
c VvV - - - - vV - - x - x - x - % - %

g vV - % - - % - VY2 - - - - _ 3

sub_minor s - - - - - v - - B B Z 7
c VvV - - - - vV -k - % - - - B
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features Narrative Educational
1/2 2/3 3/4 4/5 5/6 1/6 |1/2 2/3 3/4 4/5 5/6 1/6
Raw text features
g - - - - - Vv x - % - % - % - % - % - %
sent_length s -x - - - - v - % % % % > T x
¢ - - . . - VA P E— —* . - -
g - - % - % - - - - % - % - % - % - % - %
word_length s - - % - % - x - - v x - x - % - % - x - x
c - -k -k - - - % - - % % -% -x
Morpho-syntactic features
g - - - - - - - - % - % - - % - %
cpos_AD]J S - - - - - - Vava - - - - — %
C - - - -k - % - % - -k - % - - x -
g - - - - - v - - - v - -
cpos_ADV S - - - - - v v - - % v - -
c - - - - - - - - - x - - -
g - - - v - - - v v - - -
cpos_CON]J S - - - - - - - v - - - -
c - - - - B - - - - - - -
g vV - - - % - vV - - % - % - % - % - %
cpos NOUN s v - - - % - vV v - % - % - - - %
[V - - - % - V% - - - % - % - % -
g v ) - % - % ) - x - % - x - % - % - % .
pos_PROPN s - - % - % - % - % - V- % - % % % Tk
C - -k -k - % - % - - % - % -k -k - - %
g Vv - - - - - - - - v v -
cpos_VERB s v - - - - - - - - VR -
c v - - - - - - - % - % - - -
g - - - - - - - - - - v -
pos_AUX S - - - % - - - - - - - - %
c - - - - % - - - - - - - -
Syntactic features
g Vv v - - v - v - - - v
dep_dobj s v VvV o -x - - v - vV - - % - v
c - - Z N Z - - - - Z Z -
g v - - - - - - - % - - - -
dep_subj s - - % - - - - - % - % - -k - -
c v - - - - - - - - - - -
g - - - - - - % - - % -k - % - % - %
max_links_1 s - - - - - - - - - % - ~x ~ K
[§ - - - - - - % - - % v - - -
g - - - - - - - - - - - % -
avg_links_1 s - - - - - - - - - % - ~ % -
C - - - % - - -k - - % - - - -
g -* - - % - % - % - - % - % - % - % - % - %
sent_depth s -% - - - x - % - - - % - % - % —% v ¥
c - - - % - % - - - % - % - - % - % - %
g - - - - - - - % - % - - - % -
sent_width s - - - - - - - % - % - - - % - %
C - - % - - - - % - - % v - % - -
g v - % - % - - % v - % - % - % - % - % - %
avg_dep_all s - - - % - -k v - % % % % Tk
C - -k - % - -k v - % - % v -k -x - %
Subordination features
g -% - - % - % - % - - - - % - % - -
subord_depth s - - - - % ) vV - - - % ) - % v
C - - - - % - - - v - - - -
g - - - - - - - - - X - - -
subord_width s - v - - x - % v - v - x . - x -
c - - - - % - - - - - - - % -
g - - - - - VY - - - - - -
sub_main S - - - - - % vV - Vi VVEx - v x -
c - - - - - - - v - - - -
g - - - - - - - % v - -
sub_minor s - - - - - % - % - - v - % - %
c Vv - - - % - - - - - - - v

59



Italian Journal of Computational Linguistics Volume 6, Number 1

6. Conclusion

In this paper we have presented a novel approach to the study of language variation,
which relies on the prerequisites of the linguistic profiling methodology but with the
specific purpose of modeling the stylistic form of the different parts within a text. A
comparative investigation on four traditional genres in Italian, and two levels of com-
plexity for each, showed that morpho-syntactic and syntactic features are differently
distributed across subsections of texts representative of a given genre and language
variety. From a linguistic perspective, this suggests that the study of genre and register
variation can benefit by inspecting corpora from this fine-grained perspective. In this
respect, we intend to carry out further analyses to prove the validity of this approach
and how scalable it is when applied to novel texts of the same genres here considered.
A first step in this direction is surely to assess the accuracy of our distinction into six
parts, which was mainly driven by corpus-based considerations in terms of average
document length. In particular, we would like to compare whether the findings obtained
applying this splitting methodology are in line with those deriving form a manually-
based annotation, in which the sections are identified according to their structural
coherence as perceived by readers.

We believe that a better understanding and computational modeling of linguistic
phenomena characterizing the introductory, middle and conclusive parts of a text can
also serve to enhance automatic genre classification, as well as a number of NLP-based
applications devoted to modeling style. For instance, in the educational domain, it
could be used as a part of intelligent tutoring systems able to provide detailed feed-
back to students in writing courses and to support the development of automatic self-
assessment tools. Also in the field of Natural Language Generation, such a rich feature-
based description of the internal profile of texts can be useful to inform the automatic
generation of texts, which are not only semantically meaningful and coherent, but also
compliant with the stylistic fingerprints of a specific genre and level of complexity.
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