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Biodiversity in NLP: modelling lexical

meaning with the Fruit Fly Algorithm

Simon Preissner⇤
University of Trento

Aurélie Herbelot⇤⇤
University of Trento

The natural world is very diverse in terms of biological organisation, and solves problems in
a wide variety of efficient and creative manners. This biodiversity is in stark contrast with the
landscape of artificial models in the field of Natural Language Processing (NLP). In the last years,
NLP algorithms have clustered around a few very expensive architectures, the cost of which has
many facets, including training times, storage, replicability, interpretability, equality of access to
experimental paradigms, and even environmental impact. Inspired by the biodiversity of the real
world, we argue for a methodology which promotes ‘artificial diversity’, and we further propose
that cognitively-inspired algorithms are a good starting point to explore new architectures. As a
case study, we investigate the fruit fly’s olfactory system as a distributional semantics model. We
show that, even in its rawest form, it provides many of the features that we might require from
a good model of meaning acquisition, and that the original architecture can serve as a basis for
cognitively-inspired extensions. We focus on one such extension by implementing a mechanism
of neural adaptation.

1. Introduction

The natural world is diverse. Biological species exhibit a huge variety of genetic make-
ups, and by extension, a wealth of different morphologies, functions and behaviours.
In comparison, there is little diversity in computational models of Natural Language
Processing (NLP). In this paper, we will argue that this lack of heterogeneity is detri-
mental to finding solutions to core problems, especially when dominant paradigms fail
to satisfy linguistic, cognitive, and/or ethical requirements (Linzen 2020; Bender and
Koller 2020; Hovy and Spruit 2016; Köhl et al. 2019). We will also offer an alternative
experimental paradigm, inspired by the variegated nature of the real world.

Let us start by noting that in recent years, the NLP community has seen an increase
in the popularity of expensive models requiring enormous computational resources
to train and run. The cost of such models is multi-faceted. From the point of view of
shaping the scientific community, they create a huge gap between researchers in wealthy
institutions and those with less resources and they often make replication prohibitive.
From the point of view of applicability, they make the end-user dependent on high-tech
hardware which they may not afford, or on cloud services which may have problematic
privacy side-effects (and are not available to those with poor Internet access). Training
such models can often take a long time and extraordinary amounts of energy, generating

⇤ Centro Interdipartimentale di Mente e Cervello (CIMeC) - Corso Bettini 31, 38068 Rovereto (TN), Italy -
E-mail: simon.preissner@gmx.de

⇤⇤ Center for Mind/Brain Sciences (CIMeC) - Corso Bettini 31, 38068 Rovereto (TN), Italy; Department of
Information Engineering and Computer Science (DISI) - Via Sommarive 9, 38123 Povo (TN), Italy.
E-mail: aurelie.herbelot@unitn.it

© 2020 Associazione Italiana di Linguistica Computazionale



Italian Journal of Computational Linguistics Volume 6, Number 1

CO2 emissions disproportionate to the models’ improvements (Strubell, Ganesh, and
McCallum 2019). From a pure modelling point of view, finally, complexity often comes
with a loss of interpretability, which weakens theoretical insights. Whilst we appreciate
that a part of NLP is focused on engineering applications rather than simulating natural
language proper, it seems that the community would benefit from a more comparative
approach to modelling, and from a diversification of algorithms.

By analogy to bio-diversity, we will therefore argue for a notion of ‘artificial diver-
sity’ and introduce an experimental paradigm that would foster such heterogeneity of
models. We will further contend that a good place to find smaller and more interpretable
algorithms is indeed the natural world. Beyond the actual human brain, known as an
extremely efficient learner and storage system, many organisms display core cognitive
abilities such as incremental learning, generalisation or classification, which many NLP
systems need to emulate. Such faculties develop in extremely simple systems, which are
good contenders for the type of models we advocate here. Investigating those, however,
requires a clear stance on evaluation: we cannot expect a very simple model to beat the
performance of heavily-trained systems, but we can require it to give satisfactory results
whilst also being a good model in the strong sense of the term, that is, simulating all
observable features of a given real-world phenomenon. Thus, we propose a methodol-
ogy focused on the identification of general modelling requirements, which we imagine
being applied to a wide array of algorithms for comparison, not competition.

This paper is an extension of our original work on the Fruit Fly Algorithm (FFA),
showing that the olfactory system of the fruit fly can be be used to learn word em-
beddings with little complexity and added transparency (Preissner and Herbelot 2019).
In addition to the original material (§4 and §5.1), we clarify our methodological claim
(§2), emphasising the steps that we feel are important when designing an NLP system
with diversity in mind. We also include an extension of the original FFA, modelling
the natural neural adaptation process in living organisms, i.e. the decrease in response
to a frequent stimulus (§5.2). We show the capabilities of the modified FFA on a word
vector learning task, illustrating its fully incremental behaviour and assessing its level
of interpretability with respect to other word embedding methods (§7).

2. A methodology for artificial diversity

The standard experimental paradigm in NLP consists in setting up a task which models
can compete over, with the view of getting the best possible performance on that task.
This practice has the disadvantage of focusing efforts on ‘the most promising’ models,
from the point of view of performance, regardless of cost and characteristics. As pointed
out by (Linzen 2020), this favours models trained on huge amounts of data, with little
cognitive plausibility and little human-like generalisation power.

We propose instead to encourage paradigmatic diversity by evaluating a model
in terms of a set of theoretical requirements, as well as performance. For instance a
model may provide state-of-the-art results on a task while failing at incrementality.
Another one may implement incrementality but fall short at learning from small data.
We suggest that an analysis of very different architectures may be more beneficial to our
understanding of human language than ‘solving’ a task in raw terms (getting the best
score).

With this in mind, the methodology we propose rests on a careful analysis of
requirements, with respect to a task or phenomenon. We suggest a pipeline in five
steps:

12
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Description of the problem: a given task or phenomenon can be described in different
ways depending on the end goal of the computational simulation. A model produced
with applications in mind might explain how the task relates to a real-world need. A
model produced for fundamental research might give a description of a phenomenon
from a particular perspective (linguistic, cognitive, biological, etc).

Identification of requirements: in addition to quantifiable performance, a model
should satisfy a number of architectural desiderata. For applications, work might
focus on performance itself, especially for tasks where accuracy is critical (e.g.
decision-making tools, medical applications for end-users). We would also expect some
reflection on the ethical implications of the task. For a ‘cognitively-plausible’ model, on
the other hand, requirements might include features of human learning like the ability
to incrementally learn from small data or the ability to generalise to related but unseen
tasks.

Model justification: no model is perfect and we advocate the investigation of diverse
algorithmic solutions to a problem, even when they only partially fit a research
problem. At the same time, the use of a given architecture should be justified with
respect to the identified requirements. That is, in a spirit of transparency, it should be
made explicit which desiderata are satisfied, and which are not.

Implementation: the model implementation should make clear how requirements are
satisfied, and if relevant, at which level the algorithm simulates the given phenomenon:
for instance, a lot of discussions have taken place around the cognitive implausibility
of backpropagation in neural networks (Marblestone, Wayne, and Kording 2016).
So a model can realistically implement a mechanism at a high-level while failing to
reproduce the low-level. The present paper includes such an example, by implementing
a mechanism inspired by neural adaptation in a statistical – not biological – fashion
(§5.2).

Evaluation: it should finally be made clear which requirements will be experimentally
evaluated. This includes raw performance on the task at hand, but also implementation-
specific aspects such as interpretability of results or efficiency, as identified previously.
Keeping the goal of artificial diversity in mind, not all requirements have to be evaluated
or satisfied. The aim should be to understand which aspects of a given architecture give
positive or negative results, with respect to a certain requirement.

3. Lexical acquisition and the Fruit Fly Algorithm

This paper investigates the acquisition of lexical representations in the usage-based
framework of Distributional Semantics (DS: (Turney and Pantel 2010; Erk 2012)). In DS,
the meaning of words is represented by points in a multidimensional space, derived
from word co-occurrence statistics. Beyond the simplest, ‘count-based’ models of DS, a
variety of more powerful approaches have been developed (Bengio et al. 2003; Penning-
ton, Socher, and Manning 2014; Mikolov et al. 2013). State-of-the-art models perform
remarkably well and are often a core component of NLP applications. Recent work on
DS (e.g., ELMo: (Peters et al. 2018) and BERT: (Devlin et al. 2019)) shifts the scope of rep-
resentations from word meaning to sentence meaning, pushing performance on specific,
utterance-based tasks even further. The most successful work in the area is however
oriented towards resource-rich engineering, and the present paper is instead concerned

13



Italian Journal of Computational Linguistics Volume 6, Number 1

with modelling human language. From this point of view, it becomes apparent that
while the DS framework should be well-suited to implement usage-based approaches
to semantic acquisition, it in fact fails at being a cognitively appropriate model, in the
ways which we describe below.

As a starting point, we follow the desiderata highlighted in (Qasemizadeh,
Kallmeyer, and Herbelot 2017) for a model of lexical learning: (A) high performance on
fundamental semantic tasks, (B) efficiency, (C) low dimensionality for compact storage,
(D) amenability to incremental learning, (E) interpretability. These considerations were
not specifically brought up with cognitive plausibility in mind — it is for instance not so
clear whether low dimensionality is a feature of cognition: see (Gorban, Makarov, and
Tyukin 2020) for a discussion of the ‘blessing of dimensionality’. Nevertheless, as we
will see below, they point at crucial aspects of human language learning: the incremental
process (D) that leads to the acquisition of full lexical competence (A), the robustness
and efficiency of that process in spite of the poverty of the stimulus (B), and (to some
extent) the ability of the speaker to formulate their linguistic knowledge in terms of
explicit rules acting over categories (E).

With respect to these desiderata, the latest DS techniques can be seen to have multi-
ple shortcomings. First, they require massive amounts of text, followed by computation-
ally intensive procedures involving weighting, dimensionality reduction, complex at-
tention mechanisms etc. The high complexity of most current architectures often comes
at the cost of flexibility: once a language model is constructed, any new data requires
a re-run of the complete system in order to be incorporated. This makes incremental-
ity unsatisfiable in those frameworks (Sahlgren 2005; Baroni, Lenci, and Onnis 2007).
Further, architectures themselves have become increasingly complex, at the expense
of transparency. We recall that even Word2Vec (W2V: (Mikolov et al. 2013)), which is
a comparatively simple system by today’s standards, has attracted a large amount of
literature which attempts to explain the effects of various hyperparameters in the model
(Levy and Goldberg 2014; Levy, Goldberg, and Dagan 2015; Gittens, Achlioptas, and
Mahoney 2017). Finally, high-performance DS representations are hardly or not at all in-
terpretable. As a result, much research has been dedicated to producing representations
that are intuitively interpretable by humans (Murphy, Talukdar, and Mitchell 2012; Luo
et al. 2015; Fyshe et al. 2015; Shin, Madotto, and Fung 2018). These approaches typically
attempt to preserve or reconstruct word labels for the dimensions of the dimensionality-
reduced representations, but they can themselves require intensive procedures.

In the present paper, we will focus on requirements (A), (D) and (E). We note that
(A) is a basic feature of human language and (D), more broadly, a fundamental attribute
of animal cognition. Focusing on (D), it seems that we should find inspiration in algo-
rithms from cognitive science, which in turn would allow us to derive interpretability
(E) from the clear underpinnings of biological or psychological theories.

With this in mind, we propose to investigate the Fruit Fly Algorithm (FFA). The
FFA can be related to two existing techniques in computer science: Random Index-
ing and Locality-Sensitive Hashing . Random Indexing (RI) is a simple and efficient
method for dimensionality reduction (Sahlgren 2005), originally used to solve clustering
problems (Kaski 1998). It is also a less-travelled technique in distributional semantics
(Kanerva, Kristoferson, and Holst 2000; Qasemizadeh, Kallmeyer, and Herbelot 2017;
QasemiZadeh and Kallmeyer 2016). Its advocates argue that it fulfils a number of
requirements of an ideal vector space construction method, in particular incrementality.
As for Locality-Sensitive Hashing (LSH) (Slaney and Casey 2008), it is a way to produce
hashes that preserve a notion of distance between points in a space.

14
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Figure 1

Schematic of the adapted FFA: (l=log, m=4, n=6, c=2, h=33.3). Darker cells correspond to higher
activation; the dense representation of hashes has size 2.

In terms of implementation, the original FFA follows closely the biological archi-
tecture of the fruit fly. Our aim is to evaluate to what extent the algorithm can learn
good lexical representations (A) while naturally implementing incrementality (D), and
whether it satisfies some notion of interpretability (E).

4. Data

In the spirit of ‘training small’, the corpus used for our experiments is a subset of
100M words from the ukWaC corpus (Ferraresi et al. 2008), minimally pre-processed
(tokenized and stripped of punctuation signs); this results in 87.8M words. Following
common practice, we quantitatively evaluate the FFA as a lexical acquisition algorithm
by testing it over the MEN similarity dataset (Bruni, Tran, and Baroni 2014), which
consists of 3000 word pairs (751 unique English words), human-annotated for semantic
relatedness. For our experiments, we compute two co-occurrence count spaces over our
corpus, with different context sizes (±2 and ±5 around the target). We only consider the
10k most frequent words in the data, ensuring we cover all 751 words in MEN.

5. Model

The Fruitfly Algorithm mimics the olfactory system of the fruit fly, which assigns
a pattern of binary activations to a particular smell (i.e., a combination of multiple
chemicals), using sparse connections between just two neuronal layers. This mechanism
allows the fly to ‘conceptualise’ its environment and to appropriately react to new smells
by relating them to previous experiences. Our implementation of the FFA is an extension
of the work of (Dasgupta, Stevens, and Navlakha 2017) which allows us to generate a
semantic space by hashing each word – as represented by its co-occurrences in a corpus
– to a pattern of binary activations. We first present the minimal adaptation along with
the intuition behind the FFA and then introduce an extension in the form of a feedback
mechanism that can be used in incremental settings.

15
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5.1 The raw fruit fly

As in the original implementation, our FFA is a simple feedforward architecture con-
sisting of two layers connected by random projections (Fig. 1).

The input layer, the projection neuron layer or PN layer, consists of m nodes {x1...xm}
corresponding to m context words. It encodes the raw co-occurrence counts of a target
word with contexts, in a window of particular size. For instance, for a toy example
where m = 3 and the three PNs correspond to contexts {meow, run, piano}, the word
cat might be encoded as vector [15, 5, 0], meaning that cat occurred 15 times in the
context of meow, 5 times in the context of run and never in the context of piano. To satisfy
incrementality over a expanding vocabulary, we additionally implement an expansion
mechanism which enables m to be variable and grow as the algorithm encounters new
data. Whenever an unknown context is observed, a node xm+1 is recruited to encode
that context. Finally, in order to diminish unwanted effects resulting from the Zipfian
distribution of natural languages (Zipf 1932), the first processing step converts ‘raw’
co-occurrence counts to their natural logarithm: xi = ln(ci). This heuristic ‘flattens’ acti-
vation across the PN layer, reducing the impact of very frequent words (e.g., stopwords
such as the, or and of ).

The second layer (Kenyon Cell layer or KC layer) consists of n nodes {y1...yn}. It
is larger than the PN layer and fixed at a constant size (n does not grow). PN and
KC layer are not fully connected. Instead, each KC receives a constant number c of
connections from the PN layer. This is initially achieved by performing sampling c times
from a uniform distribution over the PN layer with P (xi) =

1
m for 0 < i  m (without

replacement). Most PNs will thus have about the same number of outgoing connections,
but this number is variable. In other words, the mapping from PN to KC is a bipartite
connection matrix M so that Mji = 1 if xi is connected to yj and 0 otherwise. The
activation function on each KC is simply the sum of the activations of its connected
PNs. In the final step, hashing is carried out via a winner-takes-all (WTA) procedure
that ‘remembers’ the IDs of a small percentage 0 < h < 1 of the most activated KCs as
a compact representation of the word’s meaning. So WTA(yi) = 1 if yi is among the hn
highest values in y and 0 otherwise.

Note that, since both the connectivity per KC and the size of the KC layer are
constant, the overall maximum number of connections is constant. Thus, the expansion
mechanism (incrementing m) is designed to maintain that maximum. If the maximum
is reached, the expansion mechanism samples existing PNs and reallocates outgoing
connections of the sampled PNs to the new PN. The selection process is biased to-
wards reallocating connections from those PNs with the most outgoing connections.
This implements the tendency for even connectivity of the PN layer. This is important
because two contexts with the same frequency, encoded as two PNs with the same level
of activation, should have the same level of influence on the activations in the KC layer.

The expansion of dimensions from the PN layer to the KC layer in combination
with random projections can be interpreted as a form of ‘zooming’ into a concept for a
particular target word: multiple context words are randomly projected onto a single KC.
If several of these context words are important for the target (i.e., their PNs have high
activation), the corresponding KC will be activated in the final hash. We can imagine this
process as aggregating dimensions of the original co-occurrence space, thus generating
latent features which give different ‘views’ into the raw data. For example, one might
imagine a random projection from the PNs beak, bill, bank, wing, and feather to a KC
which is somewhat activated by the PNs bank and bill in finance contexts, and strongly
activated for target words related to birds. Note that this behaviour lets us trace back
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the most characteristic contexts for a particular target word, and gives interpretability
to the KCs. We will come back to that feature in §8.

The FFA’s hyperparameters are expressed as a 5-tuple (f,m, n, c, h), where f is the
flattening function, m is the size of the PN layer (initially 0), n is the size of the KC layer,
c is the number of connections leading to any one KC, and h is the fraction of activated
KCs to be hashed.

5.2 Extension: an adaptation mechanism

Frequency effects have been shown to interfere with count-based models of lexical
semantics. The “flattening” function of the minimal working FFA might not be strong
enough to mitigate this issue. Traditional DS count-based models use weighting, often
in the form of Pointwise Mutual Information (PMI), to decrease the importance of very
frequent events in the generation of word vectors. Intuitively, PMI gives more weight
to contexts which are characteristic for a target word: those that occur often with the
target, but few times with other words. In neural implementations of DS like Word2Vec,
a subsampling mechanism takes care of reducing the impact of frequent items. Both
PMI and subsampling are effective techniques, but they are not suited to incremental
systems. PMI is applied to a co-occurrence count matrix after an entire corpus has
been read. Subsampling similarly relies on a preliminary analysis of the corpus, which
returns a list of word probabilities. To respect our requirements, we must find a solution
which is fully incremental.

We again find inspiration in the cognitive literature, and the mechanism of neural
adaptation. This mechanism describes a decrease in response to a repeated or constant
stimulus, and it has been subject to research for over a century, mainly in the visual
domain, cf. (Stratton 1896; Webster 2012). (Wainwright 1999) proposes that neural adap-
tation serves the optimal transmission of information, allowing for a wider range of
stimuli to be perceived (e.g., dark and bright scenes, silent and loud noises, subtle and
strong odours). Neural adaptation is naturally incremental, occurring in time after a
period or number of presentations of the stimulus. It is fair to assume that inconse-
quential events in a linguistic stimulus (e.g. very frequent events like the presence of
determiners before nouns) should exhibit adaptation. We model such adaptation effects
with a feedback mechanism which deletes connections between the PN layer and the
KC layer based on the informativeness of each hash dimension. (For transparency, note
that while this mechanism is cognitively plausible, our implementation is not and uses
standard statistics.)

The feedback is applied in three steps. First, we analyse the set of hash sequences
obtained from the FFA1 and identify the set C of KCs which contribute the least to the
discrimination of concepts. Second, we count how often each PN connects to a KC in C
and how many overall connections it has. Third, we delete a connection between a PN
and a KC in C if the PN connects to KCs in C more frequently than expected.2

1. Analysis of Hash Sequences. The intuition behind this feedback mechanism is to
maximise discrimination between word vectors (see above comments on the role of
neural adaptation for the discrimination of stimuli). We want FFA hashes to clearly

1 In analogy to the common practice of pilot task forces to de-brief after a flight, we propose to dub this
feedback mechanism “de-briefing the Fruit Fly”.

2 In the following we simplify: as PNs correspond one-to-one to context words, and so do KCs to hash
dimensions, we use hPN, contexti as well as hKC, dimensioni interchangeably.
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separate the meanings of two words along the relevant dimensions: for instance, cats
and dogs share features as animals and pets, but they differ in behaviour, with dogs
being on the whole more social creatures than cats. The patterns of latent concepts (KCs)
representing two target words such as cat and dog depend on the KCs’ connections to
the PN layer (the contexts associated with the targets). So the particular way that PNs
connect to KCs – the random projections – has an impact on the quality of the hashes. We
hypothesise that ideally, the activation of a PN should only contribute to the activations
of those KCs which actually help distinguish between concepts (and therefore assist
their selection). Presumably, KCs which are selected in the WTA step either too rarely
or too frequently do not provide full discriminative potential and are not informative
enough; those correspond to latent topics which should be fine-tuned by the adaptation
mechanism.

We quantify the informativeness of a hash position (henceforth: dimension) with the
KL-divergence DKL(P |Q) of its observed average activation P to the average activation
Q to be expected with a WTA procedure that selects h of KCs with uniform probability
(h is one of the hyperparameters of the FFA; 0 < h < 1).

A set of hash sequences would be maximally informative if each dimension yj
carried, on average, the same (maximum) amount of information. This is the case if
Q(yj = 1) = h for any yj .3 Note that while Q is a uniform distribution, a good WTA
procedure (i.e., one that minimises DKL(P |Q) for all dimensions) is not random uni-
form. Rather, the information that it receives through connections from the PN layer is
restricted in a way that makes the procedure select certain KCs when they are useful
and ignore them when they are not.

We confirm this reasoning with a sanity check, counting the 5K most frequent words
of a 1M subset of the ukWaC corpus and applying an FFA = (f=log, m=4K, n=40K,
c=6, h=0.05). It shows that while about 95% of the dimensions in a hashed space have
DKL(P |Q)  0.05, some 2.5% of dimensions have DKL(P |Q) > 0.5. In other words,
some dimensions behave extremely differently from the optimum. Counting how often
certain PNs connect to these highly divergent KCs, we find that the PNs with the
highest number of such connections belong to stop words (a, and, at, in, it, this etc.). For
example, over 80% of the connections going out from and lead to the 5% most divergent
dimensions. The most plausible explanation is that stop words, with their extremely
high frequency, overshadow the effects of other contexts and act as the sole contributors
to the high activation of a KC, which is then constantly selected in the WTA step, making
its dimension uninformative. The FFA will therefore benefit from “getting used” to these
context words if they cause a certain KC to be selected too often.

Given a set of n-dimensional hash sequences, the analysis step first computes
DKL(Pyj |Q) for each dimension yj , where Pyj is the likelihood of yj to be 0 or 1 and
Q is its probability distribution of activation under the assumption that every yj is
maximally (and thus equally) informative. In practice, Q(yj = 1) = h for all y. These
DKL values make up the set V . We then select a set C ⇢ V of the most divergent
dimensions:

C := {yj | DKL(Pyj |Q) > µ(V ) + �(V )}. (1)

3 This is subject to the assumption that dimensions are independent from each other, which is not true for
all pairs of dimensions. This means that in practice, DKL will never reach 0 for all dimensions, but it is
still valid to serve as an objective.
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If V was to follow the standard normal distribution, this would amount to
approximately 15% of dimensions to be considered for adaptation; in reality, C
will be smaller than this.

2. Selection of Candidates for Disconnection. Leaving the hash sequences and their
dimensions behind and turning to the inside of the FFA, we interpret C as the set of
KCs which are selected in the WTA step unusually often (or almost never). On the basis
of C, the connection matrix M is used to obtain a frequency distribution freq : X 7! IN
which maps each PN {xi, ..., xm} to the number of its connections to any of the KCs in C.

3. Disconnection. In the third step, the feedback mechanism decides which of the con-
nections to KCs in C will be deleted. Of course, these highly diverging KCs usually also
receive input from truly informative contexts; these connections should not be deleted.
Instead, the preliminary experiment showed that uninformative PNs are characterised
by a large number of connections to the KCs in C. Therefore we define a measure Fover

which quantifies for each PN xi its observed connectivity co(xi) to KCs in C relative
to its expected connectivity ce(xi). In other words, this measure of “overconnectivity”
expresses how much more often a certain PN directly influences the WTA decision of
an uninformative KC than expected.

The factor co is simply the relative number of connections to any KC in C: co(xi) =
freq(xi)

|C| . As for ce, we need to assume that the number of outgoing connections varies
across the PN layer, because the feedback mechanism potentially deletes more connec-
tions than the expansion mechanism (cf. §5.1) will renew during the next round of co-
occurrence counting. It is possible that at the time of the next round of feedback, the
PN layer’s connections are not evenly distributed. We therefore define a PN’s expected
connectivity to KCs in C as ce(xi) =

c(xi)
n , where c(xi) is that PN’s number of outgoing

connections. We thus calculate a PN’s “overconnectivity” as

Fover(xi) =
co(xi)

ce(xi)
=

freq(xi)

c(xi)

n

|C| , (2)

with C as defined in Eq. 1. The first term in Eq. 2 expresses the proportion of connections
to uninformative KCs to KCs in general. The second term is constant per iteration of
feedback and scales this proportion to the size of C. This allows to impose a threshold
t 2 IR+ which decides for the deletion of any one PN’s connections to the KCs in C if
Fover(xi) � t. A threshold of 1 is very conservative, imposing disconnections for any
PNs with a co above average. The higher t, the more “lenient” the decisions to delete
connections. We express this single additional hyperparameter t with a subscript (e.g.,
FFAt).

6. Experiments

In order to characterise the behaviour and performance of our incremental FFA, we
evaluate the quality of its output vectors against the MEN test set by means of the
non-parametric Spearman rank correlation ⇢. We first tune the hyperparameters of the
minimal FFA over the counts (window size: ±5) of the m=10K most frequent words of
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Figure 2

Processing steps of the experiments. Additional steps of the adaptation extension at the bottom
in light green.

a held-out corpus. Our grid search returns the following optimal configuration: (f =ln,
m=50, n=40000, c=20, h=0.08);4 we use this for all further experiments. 5

We first investigate the performance of the ‘raw’ FFA and then, in a second separate
experiment on the same data, the behaviour of the FFA with adaptation mechanism (see
Fig. 2 for a summary of the experimental design). For the first version, we incrementally
generate a raw frequency-count model of the 10K most frequent words of our corpus,
expanding the FFA with every newly encountered word. Every 1M processed words,
the aggregated co-occurrences are hashed and the corresponding word vectors stored
for evaluation. We compare a) the raw frequency space (input to the FFA); b) the final
hashes (output of the FFA); c) a separate Word2Vec (W2V) model trained on exactly the
same data, using standard hyperparameters and a minimum count set to match the 10K
target words of our co-occurrence space. We repeat this experiment for window sizes
±2 and ±5.

The second experiment on the extended FFA is similar to the first one. We use the
same hyperparameter configuration as before, but initialise multiple FFAt with varying
thresholds t for disconnection: t 2 {0, 1, 2, 3, 4, 5, 7, 10, 15}, where FFA0 does not carry
out any disconnections. FFA0 is expected to perform similarly to the FFA in the first
experiment. Counting and expansion is carried out as previously, but only for a window
size of ±5. Furthermore, hashing is only carried out every 5M encountered tokens.
The hash sequences are then analysed and feedback is applied directly before the next
iteration of the incremental loop begins. We compare the various FFAt to each other
in terms of ⇢-values, and the best FFAt to the three modelling techniques in the first
experiment (raw counts, minimal FFA, and Word2Vec).

7. Results

Fig. 3 shows the results of our first incremental simulation and, for comparison, the
results of FFA5 from the adaptation experiment. For the window size ±5, we reach ⇢ =
0.245 for raw counts, ⇢ = 0.345 for the FFA output, ⇢ = 0.454 for FFA5, and ⇢ = 0.600 for
W2V. The 2-word-context setup yields very similar results (⇢(FFA-2) = 0.310; ⇢(counts-2)

4 The grid search revealed in fact that the factor of expansion n
m is minimally important. As this FFA is

incremental, we start with m=50 and expand up to m=10K.
5 The source code for this implementation of the FFA, the extension, and the experiments is publicly

available at https://github.com/SimonPreissner/semantic-fruitfly
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Figure 3

⇢-values of ‘raw’ counts, FFA-hashed spaces,
FFA5-hashed spaces, and W2V models
(window sizes ± 2 (lines) and ± 5 (dotted)).
The dot shows the performance with FFA-5 on
POS-tagged data (nouns, verbs, and adjectives
only).

Figure 4

⇢-values of spaces by extended FFAs with
varying thresholds t (FFA0 does not apply
feedback). Measures taken every 5M tokens of
co-occurrence counting (window size ± 5).

= 0.210; ⇢(w2v-2) = 0.555). The hashing by the minimal FFA thus has a clear and positive
effect (+0.100 from 80M words on for the ±5 setup). The amount of improvement is
already visible after 20M of counted tokens (+0.05) and slowly increases with corpus
size. Results are comparable to W2V for very small corpus sizes, but start lagging
behind after 5M words. In comparison to the minimal FFA, the results for FFA5 show
much greater improvements over the raw counts (+0.205 from 80M words onward).
Improvements are similarly large at the beginning but start lagging behind W2V later,
after about 15M words.

Turning to comparisons among FFAs, Fig. 4 compares the ⇢ values for all FFAt in
the second experiment. There is a clear improvement in performance of all extended
FFAs with respect to FFA0, which (as expected) performs similarty to FFA-5 in Fig. 3.
At the last iteration, the values range from ⇢ = 0.421 (+0.083, FFA2) to ⇢ = 0.454 (+0.116,
FFA5). Among the extended FFAs, performances diverge quickly at the beginning and
continue to improve at similar rates after about 30M words. In this early period, FFAs
with higher thresholds tend to improve faster. The three best FFAs have thresholds of 5,
7, and 10; the most ‘permissive’ FFA15 falls behind with the others after the 30M token
point. Note that there is a collective plateau of the learning curves at 35M words, which
might stem from properties of the underlying text data.

Lastly, we investigate the dynamics of disconnection of the adaptation mechanism.
Fig. 5 shows the number of affected PNs (i.e., PNs that lost at least one outgoing connec-
tion) per iteration of feedback. As assumed, the initial iterations affect an overwhelming
number of PNs: at 5M words (first iteration) all FFAs apply disconnections to more
than 66% of their PNs, except for FFA15, which disconnects broadly in the second
round. The number of affected PNs drops quickly to below 2000 (20%) from about 25M
words on. At this point, two groups of FFAs emerge, similar to those in Fig. 4: FFAs
with stricter feedback (t 2 {1, 2, 3, 4}) fluctuate around 830 affected PNs with a slight
downward trend, while FFAs with less adaptation (t 2 {5, 7, 10, 15}) approach 0. For
qualitative insights, Table 1 shows the overall number of deletions for some PNs of
FFA5. It confirms that the most affected PNs are indeed stopwords, but that there is also
slight neural adaptation to content words.
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Figure 5

Number of PNs affected by the feedback
mechanism

Table 1

FFA5: overall number of deleted
connections from a specific PN, with
associated context; ranked by
number of deletions.

Rank #deleted Context PN

1 81 and 19
5 80 the 10

10 80 for 51
15 75 it 27
20 72 jobs.net 9993

100 27 back 255
200 16 got 121
500 12 marks 771

2000 9 1988 5714
5000 6 types 1422

8. Discussion

We now turn to a discussion of our results, focusing on the ‘wish list’ highlighted in §3.

Performance: hashing increases performance over the raw co-occurrence space by about
10 points overall. The minimal implementation is however outperformed by W2V after
seeing around 5M words. When extended with the suggested feedback mechanism,
performance gains over the baseline are twice as high, and this improvement especially
takes place within the first 30M tokens encountered.

In the spirit of providing a comprehensive evaluation of the modelling power of
the FFA, we attempt to pull apart aspects of the learning process that are captured by its
very simple algorithm, and those that are not. In other words, which feature results
in the clear increase over baseline performance? What does the original FFA fail to
model with respect to W2V? Why does the adaptation mechanism improve the minimal
working FFA and why do the various FFAt behave slightly different from each other?

Starting with the original FFA, we know that the algorithm generates latent features
out of the original space dimensions, encapsulated in each KC. We have tuned the size
of the KC layer, so the number of features learned by the FFA should be optimal for our
task. We assume that the performance displayed by the algorithm is due to correctly
generalising over contexts. As for its lack of performance, we can make hypotheses
based on what we know from other DS models. The minimal FFA does not perform any
subsampling or weighting of its input data, and the log function we use to minimize
the impact of very frequent items is probably too crude to fulfill that purpose. We can
tackle this issue from the perspective of the data, by preemptively restricting the input.
For example, when we informally inspect the performance of the algorithm on a POS-
tagged version of our corpus, keeping only verbs, nouns and adjectives in the input and
filtering some highly frequent stopwords (punctuation, auxiliaries), we obtain ⇢ ⇡ 0.51
over the whole corpus,6 coming close to W2V’s performance and thus indicating that
indeed, a higher-level ‘attention’ mechanism could be added to the input layer. (Note

6 We use the top 4000 dimensions of the co-occurrence matrix (i.e., m = 4000), with n = 16000, c = 20 and
h = 0.08.
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that the olfactory system of actual fruit flies only has ⇡ 50 odorant receptors, which
makes it potentially less crucial to successfully suppress large parts of the input.)

Another approach to ‘attention’ is neural adaptation, whereby the response to an
incoming signal decreases if there is continuous input and crucially, if that signal is not
informative. This approach is modelled by our feedback mechanism: starting from an
analysis of which components of a hash sequence help to discriminate it from others, we
identify dimensions which are not informative. In order to render these dimensions (or
within the FFA: KCs) more sensitive to incoming signals, we de-sensitivise them to those
signals (i.e., activations of PNs) which persistently contribute to low informativeness
(i.e., which are overly frequently connected to uninformative KCs). As in weighted
neural networks, we achieve this by decreasing the weights associated to these con-
nections. However, as we use a bipartite connection matrix M, ‘decreasing the weight’
of a connection amounts to deleting that connection altogether. The modelling of effects
of neural adaptation in the feedback-extended FFA does not entirely exclude certain
contexts from the hashing procedure; instead, it ‘habituates’ certain (but not all) KCs to
them if the contexts are constantly uninformative. This allows ‘habituated’ KCs to focus
more on other incoming signals and be a more informative part of hash sequences.

Concerning t, the threshold of disconnection, there are differences in performance
gains of the habituated FFAs: a more ‘lenient’ FFAt tends to learn faster in the beginning
than its ‘stricter’ counterparts. On another note, the FFAt with the highest threshold,
FFA15, initially learns considerably faster than the other FFAs, but falls behind other,
‘stricter’ FFAs after a while (cf. figure 4). Intuitively, a high threshold is beneficial in the
beginning because there are only few contexts other than stopwords and very frequent
content words can still positively influence the configuration of the FFA space when
hashing certain concepts. At this stage, neural adaptation allows for better development
if it is restricted to the most frequent contexts only. This changes once the counts of
moderately frequent contexts reach a reasonable frequency and become the main driver
for high-quality spaces. FFA15, with the least strict feedback, probably misses this
point in the course of learning, and continues to rely on the very frequent content words.

Incrementality: the FFA is fully incremental. Note that in our experiments, the W2V
space is retrained from scratch after each addition of 1M words to the corpus while
the FFA simply increments counts in its stored co-occurrence space. It is also in stark
contrast with weighted count-based distributional models which require some global
PMI (re-)computation to outperform the raw co-occurrence count vectors.

The adaptation mechanism is designed to preserve incrementality. In fact, while
other models merely satisfy this characteristic, the extended FFA gives a strong incen-
tive to process the available data incrementally. By pausing the construction of the count
space (and the FFA alongside) at regular intervals and evaluating the reactions of the
FFA to the data observed so far, the algorithm can adapt in order to better react to future
developments of the count space. The incentive for incremental training is especially
strong in the early phases in which the adaptation mechanism makes the most drastic
changes to M. In our experiments, the advantage in learning speed of such extended
FFAs over their minimal counterpart decreases a lot after about 30M words. Similarly
to the development of human and animal cognition in which brain plasticity decreases
after adolescence, it is plausible that the positive effect of the feedback mechanism can
be maximised by altering the frequency of feedback over time.

The most prevalent effect of the adaptation mechanism in the extended FFA can be
compared to the use of subsampling in Word2Vec: in both cases, the highly frequent
context words are considered less important in the learning process so that other, more
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informative contexts can have a greater influence. But Word2Vec achieves this in a
non-incremental manner, by calculating a sampling probability for each word which
depends on the word’s overall corpus frequency. In contrast, the FFA’s decision to put
more or less attention on a context word is not made a priori on a statistical basis; instead,
it is based on the observations of the dimensions in a hashed space.

One important benefit of the incremental hashes’ analysis is that we have full con-
trol over the set of concepts that we feed to the adaptation mechanism. This means that
in principle, we could decide to emphasise discriminability in a particular subspace of
the embedding matrix in a dynamic fashion. For example, if the adaptation mechanism
is provided a specific set of hash sequences belonging to the field of ornithology, certain
context words like wing or feather which are normally considered informative may, in
this domain, contribute relatively little to distinguishing between the given concepts.
The adaptation mechanism will optimise the FFA for the small subspace that it is given,
effectively carrying out neural adaptation to words like wing or feather which would
otherwise not have been considered particularly uninformative. With the ability to
concentrate adaptation to a conceptual subspace, we are thus able to fine-tune the FFA
to certain topics.

It is similarly useful to compare our FFA with Random Indexing (RI) which is,
by nature, an incremental technique. We commented previously on the similarities
between the two algorithms: the forward connections in the FFA can be seen as
equivalent to the random vectors used in RI. However, while RI immediately learns
vectors at reduced dimensionality, thereby combining co-occurrence counts and
random projections, the FFA separates the quantitative aspect (i.e., the co-occurrences)
from the qualitative aspect (i.e., the projections). This separation has a major advantage
and a major disadvantage. The disadvantage is clear: it needs more memory to store the
sparse co-occurrence matrix. The advantage, however, is that we can tune projections
over the course of learning, motivating changes across time with an information gain
objective. So again, the FFA comes out as a more dynamic solution.

Interpretability: the FFA’s two-layer architecture is interpretable at every stage without
any further computation. First, by following the forward connections from the PN layer
to the KC layer, each KC (and therefore each hash dimension) can be expressed as the
set of context words which influence the activity in the KC. Thus, by design of the FFA,
each hash dimension has a finite set of labels which directly express the components of
meaning associated with that hash dimension.

Second, given a hash signature, the FFA allows for uncomplicated back-tracing.
Each of the activated nodes in a word’s hash represents a single KC. The connections
of these ‘winner’ KCs to the PN layer let us reconstruct which context words originally
contributed to the largest activations in the KC layer. To illustrate this, we use the hashes
obtained at the last iteration of our incremental experiments (based on window ±5) and
identify the k = 50 most characteristic PNs for each hash. In the case of the minimal FFA,
we filter out stopwords and particles from these sets of characteristic PNs; for FFA5, we
report without filtering. Table 2 reports the characteristic PNs shared by various sets of
input words. For the original FFA, for example, for the words hawk, pigeon, and parrot
the tailed, black, breasted, red, and dove PNs are among the most influential, contributing
to many of the activated KCs.

FFA5 yields a similar, albeit differently ranked list of characteristic PNs for this par-
ticular set of word. Note however that for FFA 5 we do not need to filter stop words post-
hoc, which is a convenient effect of the adaptation mechanism. With more ‘attention’
available to content words, some of the clusters obtained from the minimal FFA do
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Table 2

Most characteristic PNs for selected sets of words. The importance of a PN for a word hash is
estimated by the number of the PN’s connections to KCs which are activated in the word’s hash
(window size ± 5).

Hashed Words Minimal FFA FFA5

hawk, pigeon, parrot tailed, breasted, black, red, dove grey, crowned, tailed, red, seen, cuckoo
library

collection, national, new, art
libraries, national, board, royal, virtual

collection data, collection, articles, description, main
museum maritime, museum, science, war, articles
beard, wig man, wearing, long, like, hair n’t, man, got, red, coat, off, hair, big, wearing
cold, dirty get, said, war, mind war, bad, cold, water, hands, enough, case

not form for FFA5 because each of the words can be described with more characteristic
contexts (e.g. the cluster library, collection, and museum in table 2). While reducing the
impact of ubiquitous contexts, some 6% of characteristic PNs are still associated with
tokens on the NLTK stopword lists, e.g. n’t or got, both shared by beard and wig. This
exemplifies the notion of adaptation whereby a constant stimulus often does not evoke a
response except for those situations in which it becomes relevant.

In the same way that semantically related words can be grouped by this back-
tracing of activations, we can connect cold to dirty in both the minimal and the extended
FFA. Some of the shared important contexts of these two words seem to encode shared
collocates (cold/dirty war, cold/dirty mind, get cold/dirty).

9. Conclusion

We started this paper suggesting that NLP should explore a broader variety of al-
gorithms for its most fundamental tasks. We argued that such a diversity can give
beneficial impulses to NLP, taking technical advances beyond ‘raw’ performance. We
suggested that the natural world can serve as a source for inspiration. As illustration,
we have explored what the olfactory system of a fruit fly can do for the representation
of word meanings, by adapting it to the problem of incremental distributional seman-
tics. Tested on a relatedness dataset, the original algorithm does capture latent lexical
representation in the data above a simple co-occurrence baseline, and improves its
performance greatly when modified with a mechanism inspired by neural adaptation.
The overall performance score of the system lies below the state-of-the-art but in return,
it provides natural incrementality and a high level of transparency.

In the spirit of porting the notion of biodiversity to ‘artificial diversity’, we high-
light the elegance of the minimal random indexing process in the fruit fly, and its
amenability to interpretation. We also hope that our system can pave the way for more
efficient implementations with respect to computation and storage. We however also
acknowledge that the minimalism of our FFA is insufficient to reach ideal performance
in lexical acquisition. Future work should therefore focus on similar algorithms at a
slightly higher level of complexity — or explore new and different approaches, bringing
more diversity to NLP.
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