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Using Deep Neural Networks for Smoothing
Pitch Profiles in Connected Speech

Michele Ferro⇤

CELI Language Technology
Fabio Tamburini⇤⇤
Università di Bologna

This paper presents a new pitch tracking smoother based on deep neural networks (DNN). It
leverages Long Short-Term Memories, a particular kind of recurrent neural network, for correct-
ing pitch detection errors produced by state-of-the-art Pitch Detection Algorithms. The proposed
system has been extensively tested using two reference benchmarks for English and exhibited
very good performances in correcting pitch detection algorithms outputs when compared with
the gold standard obtained with laryngographs.

1. Introduction

The pitch, and in particular the fundamental frequency - F0 - which represents its physical
counterpart, is one of the most relevant perceptual parameters of the spoken language and
one of the fundamental phenomena to be carefully considered when analysing linguistic data
at a phonetic and phonological level. As a consequence, the automatic extraction of F0 has
been a subject of study for a long time inspiring many works that aim to develop algorithms,
commonly known as Pitch Detection Algorithms (PDA), able to reliably extract F0 from the
acoustic component of the utterances.

Technically, the extraction of F0 is a problem far from trivial and the great variety of
methodologies applied to this task demonstrate its extreme complexity, especially considering
that it is difficult to design a PDA that works optimally for the different recording conditions,
considering that parameters such as speech type, noise, overlaps, etc. are able to heavily influence
the performances of this kind of algorithms.

Scholars worked hard searching for increasingly sophisticated techniques for these specific
cases, although extremely relevant for the construction of real applications, considering solved,
or perhaps simply abandoning, the problem of the F0 extraction for the so-called “clean speech”.
However, anyone who has used the most common programs available for the automatic extraction
of F0 is well aware that errors of halving or doubling of the value of F0, to cite only one type
of problem, are rather common and that the automatic identification of voiced areas within the
utterance still poses numerous problems.

Every work that proposes a new method for the automatic extraction of F0 should accom-
plish an evaluation of the performances obtained in relation to other PDAs, but, usually, these
assessments suffer from the typical shortcomings deriving from evaluation systems: they usually
examine a very limited set of algorithms, often not available in their implementation, typically
considering corpora not distributed, related to specific languages and/or that contain particular
typologies of spoken language (pathological, disturbed by noise, overlapped dialogues, singing
voices, etc.) (Veprek and Scordilis 2002; Wu, Wang, and Brown 2003; Kotnik, Höge, and Kacic
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2006; Jang et al. 2007; Luengo et al. 2007; Chu and Alwan 2009; Bartosek 2010; Huang and
Lee 2012; Chu and Alwan 2012; Babacan et al. 2013; Gawlik and Wszolek 2018). There are
a few studies, among the most recent, that have performed quite complete evaluations that are
based on standard speech corpora often freely downloadable (de Cheveigné and Kawahara 2002;
Camacho 2007; Wang and Loizou 2012; Sukhostat and Imamverdiyev 2015; Jouvet and Laprie
2017). Most research works use a single metric in the assessment that measures a single type
of error, not considering or partly considering the whole panorama of indicators developed from
the pioneering work of Rabiner and colleagues (1976) and therefore, in our opinion, the results
obtained seem to be rather partial.

Tamburini (2013) performed an in-depth study of the different performances exhibited by
several widely used PDAs by using standard evaluation metrics and well-established corpus
benchmarks.

Starting from this study, the main purpose of our research was to improve the performances
of the best Pitch Detection Algorithms identified in (Tamburini 2013) by introducing a post-
processing smoother. In particular, we implemented a pitch smoother adopting Keras1, a powerful
high-level neural networks Application Program Interface (API), written in Python and able to
run on top of TensorFlow, one of the most powerful machine learning libraries especially devoted
to the development of large neural network models.

The paper is organised as follows: in Section 2 we will describe the pitch smoothing
problem; in Section 3 we will present our neural PDA smoother while in section 4 we will define
the experiments we did to evaluate our proposal; Section 5 shows the results and in Section 6 we
will draw some provisional conclusions and propose some future works.

2. Pitch error correction and smoothing

Typical PDAs are organised into two different modules: the first stage tries to detect pitch
frequencies frame by frame and, in the second stage, the pitch candidates, along with their prob-
abilities, are connected into pitch contours using dynamic programming techniques (Bagshaw
1994; Chu and Alwan 2012; Gonzalez and Brookes 2014) or hidden Markov models (HMMs)
(Jin and Wang 2011; Wu, Wang, and Brown 2003). In this second stage, the different PDAs apply
various techniques in order to correct the intonation profile removing various errors produced by
the first step.

These techniques are, however, not completely satisfactory and various types of errors
remain in the intonation profile. That is why in the literature we can find several studies aiming
at proposing pitch profile smoothers that further post-process the PDAs output trying to enhance
the profile correctness. Some works try to correct intonation profiles by applying traditional
techniques (Zhao, O’Shaughnessy, and Minh-Quang 2007; So, Jia, and Cai 2012; Jlassi, Bouzid,
and Ellouze 2016), while few others (see for example (Kellman and Morgan 2017; Han and
Wang 2014)) are based on DNN (either Multi-Layer Perceptrons or Elman Recurrent Neural
Networks).

A complex periodic sound will actually have multiple repeating patterns in its waveform:
some repeating at faster rates and some taking longer to repeat their cycles. It is the slowest (the
longest period/lowest frequency) repeating pattern in a complex periodic sounds that governs
the signal’s perceived pitch. It is important mentioning the difference between perceptual and
quantitative properties. Starting from this contrast, the pitch of a sound can be defined as the
mental sensation or perceptual correlate of fundamental frequency; in general, if a sound has a
higher fundamental frequency we perceive it as having a higher pitch. The relationship is not

1 https://keras.io/
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linear, since human hearing has different responses for different frequencies. Roughly speaking,
human pitch perception is most accurate between 100 Hz and 1000 Hz, and in this range pitch
correlates linearly with frequency. Human hearing represents frequencies above 1000 Hz less
accurately and above this range pitch correlates logarithmically with frequency.

F0 can be seen as the minimum frequency of the vocal folds vibration, or the frequency
of the complex wave. All complex periodic sounds or waves can be mathematically analyzed
as being composed of multiple single-frequency sounds/waves, such a series of sine waves: the
Fourier’s theorem states that any periodic signal is composed of the summation of multiple sine
waves with particular amplitudes and phases. Fourier’s theorem by extension implies that we
can decompose complex periodic sounds into simple components (Byrd and H.Mintz 2010). The
frequencies of a signal’s harmonics are integer multiples of its F0: for this reason the second
harmonic is 2 x F0, the third harmonic is 3 x F0 and so on. We cannot tell simply by looking at
a complex waveform what its component frequencies or harmonics are. A computer is generally
used to implement algorithms based on Fourier’s theorem to find a complex signal’s harmonics.
A different kind of display, called a power spectrum, can be useful for showing the frequency
composition or spectrum of a sound frame. A power spectrum, like in Figure 1, plots frequency
on the horizontal axis and amplitude (or magnitude) on the vertical axis.

Figure 1
Power spectrum of a speech sample frame showing F0 and its harmonics.

Despite the number of studies devoted to the design of efficient PDAs, correct pitch extrac-
tion remains an open problem for various reasons. Pitch estimation, indeed, is a process heavily
influenced by phenomena observed in spontaneous speech:

r F0 varies in time, potentially at each period of vibration of vocal folds;r it often happens that "true" F0 has sub-harmonics as its submultiples which alter
estimation of values in contrast with perception;r the presence of resonances and filters in the vocal tract can emphasize harmonics
of F0 multiples of the real value;r sonority is often very irregular at the beginning and at the end of a voiced
linguistic segment and all the frames involved in these transitions have minimal
similarities between the corresponding waveforms;r even for human experts the classification of the boundaries of voiced areas is a far
from an easy task;
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r due to certain disturbances it is possible that signals occur with a relevant
percentage of periodicity in unvoiced areas too;r voiced regions have a wide dynamic range of amplitude;r it is difficult to distinguish periodic background noise from breathy voice;r some voiced intervals are very short and they can be composed of just two or three
cycles.

These different and complex problems have determined the spread of studies about F0
detection. We will focus on some of these algorithms later in this contribution.

The range of fundamental frequencies found in human voices is roughly 60 to 500 Hz, but in
adult males a typical F0 might be 120 Hz; in a female voice a typical F0 might be 225 Hz, and in a
child it might be 265 Hz. It is worth underlying that variation in fundamental frequency in speech
is due to the structure of the larynx and the vocal folds only (Byrd and H.Mintz 2010). In addition
to voicing, there are many ways to generate noise or sources of sound in the vocal tract during
speech. For example, a fricative consonant creates noise by the turbulent airflow generated when
air is forced through a narrow constriction, sometimes directed against the teeth as an obstacle.
In this case, unlike the voicing source, the acoustic energy is generated in the mouth, not at the
larynx. We state this because it has to be understood that many sound sources occur in speech,
such as the noise created when a stop constriction is opened, but we will concentrate on the main
sound source in speech - the voicing source - and look next at how the harmonic structure of this
source is shaped by the vocal tract.

Here, we will focus on a specific category of pitch detection errors, the halving and doubling
errors, in which the fundamental frequency F0 is confused with one of its harmonics (or sub-
harmonics), generating incorrect assignments to multiple (or sub-multiple) frequency values of
the correct one (Murray 2001). More precisely, F0 doubling errors occur when the estimated
fundamental frequency is an overtone of the real fundamental frequency; on the other hand, F0
halving errors occur when the F0 determination algorithm erroneously mistakes the correctly
estimated fundamental frequency by dividing the correct F0 value by some multiple of two. The
most sophisticated algorithms tend to apply appropriate post-processing procedures in order to
properly identify the correct value, among several possible candidates typically ranked in some
way by the F0 extraction algorithm.

We will return to our brief description of halving and doubling errors later in this paragraph;
now we provide a description of the smoothing method proposed by (Bagshaw 1994) in order
to clarify the problem. The main purpose of this procedure is to distinguish between legitimate
variations in the pitch profile and errors, trying to correct these in the best way. In particular,
there is the assumption that F0 can grow between a frame and the next one to the maximum of
the 75% and consequently it can drop to the 25% of the value of the first of the two frames. All
values outside this range are considered respectively doubling and halving errors. At this point
each voiced section of the utterance is processed separately: all the F0 values in the different
frames which make up the voiced area are divided in various groups, each of them denoted by
an index between -2 and 2. The partition begins putting the F0 values in the group identified
with the index 0 as long as the transition among two subsequent frames generates a potential
halving or doubling error. If this happens, the following F0 values are respectively positioned
in the group identified with the index -1 or 1. The procedure continues in this way until all
the values in the voiced region are placed in a group, changing the index of the group each
time a potential error is detected. When the operation of subdivision of F0 values in each group
ends, the procedure of correction of halving and doubling errors begins: the group containing the
largest quantity of values is identified, defining it as the condition of normality (it could be the
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group indexed with 0 or even a different group). Then, groups with a higher index are considered
containing doubling errors while groups with a lower index are considered containing halving
errors. Consequently the entire set of errors is corrected multiplying and dividing by powers of
2 the F0 values collected in the groups that identify incorrect estimates of the real fundamental
frequency value.

We report also the research carried out by (Brøndsted 1997) according to which for a
specific dialect of Danish, the presence of a glottal consonant "stød" can cause a pitch tracker to
incorrectly report a halved value, as an example of a pitch tracking problem intimately connected
with specific phonetic configurations. A further step would be to coordinate descriptions of
pitch tracking doubling and halving errors with respect to categorizations of laryngealization
(sometimes called creaky voice). This is a special kind of phonation in which the arytenoid
cartilages in the larynx are drawn together; as a result, the vocal folds are compressed rather
tightly, becoming relatively slack and compact. They normally vibrate irregularly at 20-50 pulses
per second, about two octaves below the frequency of normal voicing, and the airflow through
the glottis is very slow. Although creaky voice may occur with very low pitch, as at the end of
a long intonation unit, it can also occur with a higher pitch (Titze 1994). The phenomenon of
laryngealization is involved in the context of "cut-off" words, for example those words that a
speaker does not complete (Shriberg 1999).

A better recognition of glottal pulses may lead to improve cut-off words recognition which
are difficult phenomena to determine for a pitch tracker and consequently for an Automatic
Speech Recognition (ASR) system too. Regarding this aspect, one can opt for an harmonic model
of speech, which has gained considerable attention recently. This model takes into account the
harmonic nature of voiced speech and it can be formulated to estimate pitch candidates with
maximum likelihood criterion. Without entering deeply into the matter, the popular source-
channel model of voiced speech considers glottal pulses as a source of period waveforms which
is being modified by the shape of the mouth assumed to be a linear channel. Thus, the resulting
speech is rich in harmonics of the glottal pulse period (Stylianou 1996). Like in other PDAs, pitch
doubling and halving errors affect the harmonic model too; in order to solve these problems, one
can opt for a local smoothing function that exploits the fact that there is more energy in the
harmonics near the true pitch than at the corresponding neighbourhoods of half or double of its
value. A local smoothing function is employed to include this energy and improve the strength
of the pitch candidates in each frame. The harmonic model requires specification of the number
of harmonics and the optimal choice depends on noise conditions (Asgari and Shafran 2013).

Here we provided a brief analysis of doubling and halving errors, a description of a
procedure of pitch smoothing, some language dependent problems and the employment of the
harmonic model to solve some of them. Starting from the next section we put our attention on
our own proposal.

3. A Neural PDA smoother

The main purpose of our research work was an attempt to improve the performances of the Pitch
Detection Algorithms. It is relevant to underline that all PDAs embody, as a last stage, some
kind of smoothing algorithm trying to capture and correct mistakes in the intonation profile. As
discussed before, these methods are often not sufficient to provide a reliable contour throughout
the whole utterance. The Neural Smoother we are proposing tries to further improve profile
smoothing applying more powerful techniques.

Our first assumption regarded the typology of the artificial neural network to employ. In
order to correct the PDAs results, our pitch smoother needed to operate an increasingly precise
approximation from the pitch input sequence to be improved to the gold standard output target
obtained from the laryngograph. Having configured our problem as a sequence-to-sequence
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mapping, we employed a particular architecture of recurrent neural network (RNN) suitable for
this kind of problem.

These networks are recurrent because they perform the same computations for all the
elements of a sequence of inputs, and the output of each element depends, in addition to the
current input, from the previous state. RNNs have proved to have excellent performances in
problems such as predicting the next character in a text or, similarly, the prediction of the next
word in a sentence. They are also used for more complex problems, such as Machine Translation
and Text Summarisation. In the former case, the network gets as input a sequence of words in a
source language, while the output will be translated from the input sequence in a target language.
Finally, other applications of great importance in which the RNNs are widely used are speech
recognition and also image recognition.

A Long Short Term Memory (LSTM) neural net is a special Recurrent Neural Network
architecture that was originally conceived by (Hochreiter and Schmidhuber 1997). This kind of
neural network has gained a lot of attention in the context of deep learning because it offers
excellent results and performances. The LSTM based networks are ideal for temporal sequences
prediction and classification, replacing many traditional approaches to deep learning.

LSTM is a network composed by cells (LSTM blocks) linked to each other. Each LSTM
block contains three types of gate: Input gate, Output gate, and Forget gate, which broadly
implement, respectively, the function of writing, reading, and resetting on the cell memory. More
precisely, the Input gate regulates the possibility for a new value to enter into the cell, the Forget
gate determines if the value will be retained into the cell or not and the Output gate controls to
which extent the cell value is transferred into the block output. Some of the connections between
the LSTM elements are recurrent and all the weights of the connections have to be learned during
the training process. The presence of these gates allows LSTM cells to remember information
for a long time reducing the problem of the vanishing/exploding gradients during the training.

Mathematically, we can formalise the behaviour of a standard LSTM cell as

ft = �g(Wfxt + Ufht�1 + bf )

it = �g(Wixt + Uiht�1 + bi)

ot = �g(Woxt + Uoht�1 + bo)

ct = ft � ct�1 + it � �c(Wcxt + Ucht�1 + bc)

ht = ot � �h(ct)

(1)

where xt 2 Rd is input vector to the LSTM unit, ft 2 Rh the input gate’s activation vector,
ot 2 Rh the output gate’s activation vector, ht 2 Rh the hidden state vector also known as output
vector of the LSTM unit, ct 2 Rh the cell state vector, W 2 Rh⇥d, U 2 Rh⇥h, b 2 Rh the weight
matrices and bias vectors parameters which need to be learned during training, �g,�h,�c the
activation functions and the superscripts d and h refer to the number of input features and to the
number of hidden units, respectively.

More specifically, in our case study we decided to employ a bidirectional LSTM. Bidirec-
tional neural networks are based on the idea that the output at time t may depend on previous and
future elements in the sequence. To realize this, the output of two neural networks must be mixed:
one executes the process in one direction and the second in the opposite direction by processing
the reversed input sequence. The network splits neurons of a normal recurrent neural network into
two directions, one for positive time verse (forward states), and another for negative time verse
(backward states) concatenating the outputs of the two networks. By this structure, the output
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layer can get information from past and future states. We decided to opt for bidirectional LSTMs
in order to have a better performance in our sequence learning (or approximation) problem.

We decided also to one-hot encode all the frames of our sequences, in order to obtain better
performances in our sequence learning task. For our specific case, since we were working on
female e male sources in both our datasets, we chose an interval of [0, 499] Hz for the number of
features. Therefore, we transformed the F0 values determined for each frame in order to obtain
input/output one-hot vectors; on the other hand, for the final evaluation of the predictions made
by our model, we reversed this transformation getting common pitch values in the interval [0-
499] Hz. This encoding of input and output data leads to input/output vectors of size 500 in our
neural network model.

4. Experiments

4.1 Neural PDA setup

We implemented our pitch smoother in Python adopting Keras and Tensorflow. We defined a bi-
directional Long Short Term Memory neural network layer with 100 neurons for one direction
of the sequence and 100 neurons for the other direction, with a total of 200 LSTM units. A
TimeDistributed layer has been wrapped around the output layer so that one value per timestep
could be predicted given the full sequence provided as input. This allowed the LSTM hidden
layer to return a sequence of values (one per timestep) rather than a single value for the whole
input sequence. The network was optimised by using the categorical cross entropy loss function
and the Adam optimiser algorithm (Kingma and Ba 2015).

4.2 Tested PDAs

We chose to test the three PDAs exhibiting the best performances in (Tamburini 2013), namely
RAPT, SWIPE’ and YAAPT. Even though they were originally developed as MATLAB func-
tions, we decided to adopt the corresponding Python implementations and thus, as a first step,
we have to test the correspondence of performances of the python implementations with the
original ones in MATLAB.

4.2.1 A Robust Algorithm for Pitch Tracking (RAPT)
The primary purpose in the development of RAPT (Talkin 1995) was to obtain the most ro-
bust and accurate estimates possible, with little thought to computational complexity, memory
requirements or inherent processing delay. This PDA was designed to work at any sampling
frequency and frame rate over a wide range of possible F0, speaker and noise condition. In fact,
although the delay inherent in RAPT probably disqualifies it from use in standard telephony,
it does operate continuously and can be used anywhere. About this matter, several efficiency
enhancements have been incorporated that significantly reduce computational costs while main-
taining the desired accuracy. More specifically, for the determination of the pitch profile, RAPT
adopts a Normalized Cross-Correlation Function (NCCF) and each candidate of F0 is estimated
thanks to dynamic programming (also known as dynamic optimization, a method employed for
solving a complex problem by breaking it down into a collection of simpler subproblems). The
Python implementation we used is available at http://sp-tk.sourceforge.net/.

4.2.2 The Sawtooth Waveform Inspired Pitch Estimator (SWIPE/SWIPE’)
SWIPE (Camacho 2007) improves the performance of pitch tracking adopting these measures:
it avoids the use of the logarithm of the spectrum, it applies a monotonically decaying weight
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to the harmonics, then the spectrum in the neighbourhood of the harmonics and middle points
between harmonics are observed and smooth weighting functions are used. We will not focus
on an overview of the mathematical expression of this PDA, but, in general, the algorithm can
be described as the computation of the similarity between the square-root of the spectrum of
the signal and the square-root of the spectrum of a sawtooth waveform, using a pitch dependent
optimal window size. This definition gave rise to the name Sawtooth-Waveform Inspired Pitch
Estimator (Camacho 2007). In our research we adopted SWIPE’, a variant of this PDA that
adopts only the main harmonics for pitch estimation, implemented in Python and available again
at http://sp-tk.sourceforge.net/.

4.2.3 Yet Another Algorithm for Pitch Tracking (YAAPT)
YAAPT (Zahorian and Hu 2008) is a fundamental frequency (Pitch) tracking algorithm which
was designed to be highly accurate and very robust for both high quality and telephone speech.
One of the key features of YAAPT is the usage of spectral information to guide F0 tracking.
Spectral F0 tracks can be derived by using the spectral peaks which occur at the fundamental
frequency and its harmonics. It is experimentally shown that the F0 track obtained from the spec-
trogram is useful for refining the F0 candidates estimated from the acoustic waveform, especially
in the case of noisy telephone speech (Zahorian and Hu 2008). With relation to the functioning
of this PDA, a preprocessing step is employed to create multiple versions of the signal. Conse-
quently, spectral harmonics correlation techniques (SHC) and a Normalized Cross-Correlation
Function (as in RAPT) are adopted. The final profile of F0 is estimated thanks to dynamic
programming techniques. For our experiments we employed pYAAPT, a Python implementation
available at http://bjbschmitt.github.io/AMFM_decompy/pYAAPT.html.

4.3 Gold Standards

The evaluation tests were based on two English corpora considered as gold standards, both freely
available and widely used in literature for the evaluation of PDAs:

r Keele Pitch Database - KPD2 (Plante, Meyer, and Ainsworth 1995): it is
composed of 10 speakers, 5 males and 5 females, who read, in a controlled
environment, a small phonetically balanced text (the ’North Wind story’). The
corpus contains also the output of a laryngograph, from which it is possible to
accurately estimate the value of F0.r FDA3 (Bagshaw, Hiller, and Jack 1993): it is a small corpus containing 5’ of
recordings divided into 100 utterances, read by two speakers, a male and a female,
particularly rich in fricative sound, nasal, liquid and glide, sounds particularly
problematic to be analysed by the PDAs. Also in this case the gold standard for
the values of F0 is estimated starting from the output of the laryngograph.

It is worth noticing that each of these datasets contains the output of a laryngograph. This
instrument is composed of a pair of disc electrodes to record the vibrations around the throat.
Electroglottography (EGG) signals record the time varying displacement of air particles at the
glottis during the production of voiced sounds such as vowels, semi-vowels, nasals, diphthongs
and voiced consonants. The electrodes are placed, non-invasively, at either side of the larynx.

2 https://lost-contact.mit.edu/afs/nada.kth.se/dept/tmh/corpora/KeelePitchDB/
3 http://www.cstr.ed.ac.uk/research/projects/fda/

40



Ferro and Tamburini Smoothing Pitch Profiles with Deep Neural Networks

A high-frequency electric current is applied, and due to variance in electrical impedance from
the opening and closing of the glottis, an electroglottogram can be produced. There are several
advantages of using EGG, the most significant being to reduce background noise. By eliminating
irrelevant signals, EGG can increase the accuracy in the identification of perceived pitch. In the
future, real-life applications of EGG can be developed due to its ability to reduce background
noise, such as a wireless EGG integrated with clothes (Hui et al. 2015). This fact had crucial
implications for the aims of our contribution: using KPD we encountered a few problems due to
corrupted data. As (Plante, Meyer, and Ainsworth 1995) pointed out, where they knew that there
was voiced speech but the larynx trace was corrupted, the data have been set to -1 (this happened
sometimes because the measurements were based on two electrodes on the skin, which could
lose contact as the speakers moved around). We will explain later how we decided to treat these
corrupted data.

To perform our experiments, we had to split our datasets into a training set, a validation set
and a test set. Consequently, we trained our model on the training set, we used the validation
set to tune the hyperparameters of our smoother and finally the test dataset was employed to
provide a balanced evaluation of our final model. This procedure was adopted both on KPD and
FDA files, considering the output sequences of our PDAs and the gold standards obtained from
the laryngograph. The main differences among the two datasets were the total number of files
(10 speech samples for KPD and 100 for FDA) and the size of the files themselves. In fact, the
original KPD files were much bigger than those of FDA, thus we decided to split each of them
into 4 slices obtaining 40 speech samples. Considering that our purpose was trying to correct the
sequences of the output of RAPT, pYAAPT and SWIPE’ PDAs, we had in total 6 experiments (3
PDAs x 2 datasets).

In order to operate a significant subdivision between female and male files, we present our
splitting for Keele Pitch Database:

Training set Validation set Test set
Females 12 4 4
males 12 4 4

Here, instead, the splitting for FDA:

Training set Validation set Test set
Females 34 8 8
males 34 8 8

We considered also the possibility of joining the two datasets in order to see if we get some
improvements (Mixed configuration), and we followed the splitting

Training set Validation set Test set
Females 46 12 12
males 46 12 12

All the splittings are speaker based as the speakers in the validation and test sets are not part
of the training set.

4.4 Evaluation metrics

Proper evaluation mechanisms have to introduce suitable quantitative measures of performance
that should be able to grasp the different critical aspects of the problem under examination.
In (Rabiner et al. 1976) a de facto standard for PDA assessment measures is established, a
standard used by many others after him (e.g. (Chu and Alwan 2009)). Given Evoi!unv and
Eunv!voi, respectively representing the number of frames erroneously classified between voiced
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and unvoiced and vice versa, and Ef0, denoting the number of voiced frames in which the pitch
value produced by the PDA differs from the gold standard for more than 16Hz, then we can
define:

r Gross Pitch Error:

GPE = Ef0/Nvoi

r Voiced Detection Error:

V DE = (Evoi!unv + Eunv!voi)/Nframe

where Nvoi is the number of voiced frames in the gold standard and Nframe is the number of
frames in the utterance. These indicators, taken individually or in pairs, have been used in a large
number of works to evaluate the performance of PDAs. The two indicators, however, measure
very different errors; it is possible to measure the performance using only one indicator, usually
GPE, but it evaluates only part of the problem and hardly provide a faithful picture of PDA
behaviour. On the other hand, considering both measures leads to a difficult comparison of the
results.

In order to find a remedy to these problems, (Lee and Ellis 2012) suggested slightly different
metrics, which allow the definition of a single indicator:

r Voiced Error:

V E = (Ef0 + Evoi!unv)/Nvoi

r Unvoiced Error:

UE = Eunv!voi/Nunv

r Pitch Tracking Error:

PTE = (V E + UE)/2

where Nunv is the number of unvoiced frames contained in the gold standard. However, trying
to interpret the results obtained by a PDA in light of the PTE measurement is rather complex:
it is not immediate to identify from the obtained results the most relevant source of errors.

In light of what has been said previously, it seems appropriate to introduce a new measure of
performance that is able to easily capture the performance of a PDA in a single, clear indicator
that considers all types of possible errors to be equally relevant. So, following (Tamburini 2013),
we adopted the Pitch Error Rate as performance metric, defined as:

PER = (Ef0 + Evoi!unv + Eunv!voi)/Nframe

This measure sum all the types of possible errors without privileging or reducing the contribution
of any component and allowing a simpler interpretation of the obtained outcomes.
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5. Results

5.1 Preliminary Evaluation

We repeated the same experiments as in (Tamburini 2013) with the Python implementations of
the chosen algorithms in order to check the employed codes and to derive common baselines.

Obviously a few small differences in performances will be encountered. Table 1 shows the
performance values obtained by the three algorithms compared to all the measures considered for
both the gold standards used in the evaluation. We consider these results as baseline performance.

Table 1
The experiments in Tamburini (2013) reproduced using the considered PDA python implementations.

Keele Pitch Database
PDA PER GPE VDE PTE VE UE

pYAAPT 0.14056 0.05517 0.09777 0.09433 0.1132 0.07539
RAPT 0.12596 0.04917 0.08806 0.08498 0.11966 0.05031

SWIPE’ 0.14236 0.03556 0.11474 0.09623 0.12867 0.0638
FDA Corpus

PDA PER GPE VDE PTE VE UE
pYAAPT 0.11912 0.05381 0.08889 0.08689 0.11016 0.06361

RAPT 0.09533 0.03591 0.07554 0.07159 0.09637 0.0468
SWIPE’ 0.10594 0.02543 0.09208 0.07863 0.10652 0.05074

The performances obtained for the FDA corpus are generally better; maybe the algorithms
suffer the length of the speech files. As we pointed above, in fact, KPD is a larger corpus
with definitely bigger files even if we splitted each of them into four slices. Another important
consideration that has to be made, regards the corrupted data in the KPD: removing them from
the sequences probably got worse the final evaluation, affecting the total length of the sequences
themselves. Furthermore, it has to be kept in mind that we used Python implementations of
these algorithms that, as we pointed out some times earlier, are originally available as MATLAB
functions. We do not have the proof that this implementation difference affects the results,
but more work about checking this issue should be done in the future. Leaving aside these
considerations, let us focus on the performances. It can be observed easily that RAPT reaches
the best achievements both on KPD and FDA corpus. In evaluating the results obtained, it seems
appropriate to study more accurately the types of errors that the three algorithms exhibited in
the automatic detection of F0; Table 2 focuses on the total Pitch Error Rate and how this is
distributed with respect to the three types of errors that make up its definition, namely Ef0,
Evoi!unv , Eunv!voi.

Table 2 shows quite different behaviours among the three pitch detection algorithms: the
errors committed seem to be distributed among the different types of error in an uneven way
and with different configurations between the PDAs. It could therefore be useful to consider the
possibility of combining the contributions of the different algorithms as an attempt to improve
their performances. One possibility to do this was to consider, as an estimate of the pitch value
in a certain frame, the median of the values calculated by an odd number of different algorithms
(in this specific case study, three different PDAs) as it has been done by (Tamburini 2013).
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Table 2
Error analysis on the experiments in Tamburini (2013) reproduced using the considered PDA python
implementation. We added a further algorithm ‘Median’, proposed in the cited study, that, for each frame,
keeps the median value among the three F0 values proposed by the considered PDAs.

Keele Pitch Database
PDA PER Ef0 Evoi!unv Eunv!voi

pYAAPT 0.14056 0.04278 0.04411 0.05366
RAPT 0.12596 0.03789 0.05252 0.03554

SWIPE’ 0.14236 0.02762 0.06985 0.04488
Median 0.08814 0.02656 0.03359 0.03564

FDA Corpus
PDA PER Ef0 Evoi!unv Eunv!voi

pYAAPT 0.11912 0.03023 0.03399 0.0549
RAPT 0.09533 0.01978 0.03438 0.04116

SWIPE’ 0.10594 0.01385 0.04773 0.04434
Median 0.10182 0.02537 0.03686 0.03917

From Table 2 it emerges quite clearly how the combination of different algorithms with the
median method makes better results. In particular, it is worth underlying how much the Ef0 error
decreases, especially in the experiments involving KPD.

This section presented an objective evaluation of three algorithms for the automatic extrac-
tion of the fundamental frequency value in the spoken language, using a large set of different
metrics. It will be useful as a baseline for comparing the performances of the proposed neural
PDA smoother.

5.2 Neural PDA Evaluation

In order to carry out an objective evaluation of our pitch smoother, we decided to put our attention
on one of the metrics employed for the evaluation of the three Pitch Detection Algorithms,
namely the Pitch Error Rate (PER). In fact, as we pointed out earlier, this measure is able to
easily capture the performance of a PDA in a single, clear indicator that considers all types of
possible errors to be equally relevant.

After the influential paper from (Reimers and Gurevych 2017) it is clear to the community
that reporting a single score for each DNN training session could be heavily affected by the
system initialisation point and we should instead report the mean and standard deviation of
various runs with the same setting in order to get a more accurate picture of the real systems
performances and make more reliable comparisons between them.

The PER metric was computed for each epoch during the training phase for all subsets in
order to determine the stopping epoch when we get the minimum PER on the validation set. We
performed 10 runs for each experiment computing means, standard deviations and significance
tests.

We also tested our pitch smoother on the mixed configurations of the datasets employed,
adopting the same procedures.

Table 3 shows all the obtained results. The proposed system always exhibits the best results
in any experiment with relevant performance gains with respect to the PDAs base outputs. All
the differences resulted highly significant when applying a t-test. Given the very small standard
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deviation in all the experiments we can conclude that, in this case, the initialisation point did not
affect the neural network performances too much.

Table 3
PER mean (µ) and standard deviation (�) obtained by the proposed pitch profile smoother. One sample
t-test significance test returns p⌧0.001 for all experiments. N.B.: Even if the number of experiments is
small (10), the power analysis of the t-tests is always equal to 1.0 showing maximum t-test reliability. The
assumption of normality has been tested, with the Shapiro-Wilk test, before computing the t-test.

Keele Pitch Database
PDA PDA PER Smoother Smoother

PER µ PER �

pYAAPT 0.14056 0.07958 0.00271
RAPT 0.12596 0.08481 0.00376

SWIPE’ 0.14236 0.10065 0.00292
FDA Corpus

PDA PDA PER Smoother Smoother
PER µ PER �

pYAAPT 0.11912 0.06731 0.00421
RAPT 0.09533 0.06752 0.00232

SWIPE’ 0.10594 0.07769 0.00212
Mixed Keele+FDA Corpus

PDA PDA PER Smoother Smoother
PER µ PER �

pYAAPT 0.06951 0.06302 0.00246
RAPT 0.09859 0.07256 0.00297

SWIPE’ 0.08758 0.08151 0.00144

Referring to the performance outcomes of the Pitch Detection Algorithms we provided in
Table 3, it can be easily noted a general, great improvement. For both the configurations we
employed, pYAAPT shows the best performances; the category in which we observe the bigger
error in each of our combinations is Evoi!unv , the number of frames erroneously classified
between voiced and unvoiced; this means that our smoother has a major struggle in correctly
identifying the boundaries between voiced and unvoiced regions. Despite this, our pitch smoother
behaves rather well in correcting all halving and doubling errors, which are collected in Ef0, the
indicator that measures the error of estimation of the F0 values on frames considered voiced.

We performed a one sample t-test significance test that returned p ⌧ 0.001 for all experi-
ments and, even if the number of experiments is small (10), the power analysis of the t-tests was
always equal to 1.0, showing maximum t-test reliability.

6. Conclusions

This paper presented a new pitch smoother based on recurrent neural networks that obtained
excellent results when evaluated using two standard benchmarks for English. The results showed
that our smoother is able to efficiently learn how to smooth a pitch profile produced by
widely used PDAs removing halving and doubling errors from the profile. The proposed Neural
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Smoother will not increase the total processing time for each utterance as, once properly trained,
is able to process and correct a single intonation profile very quickly.

Future works could regard the intermixing of various corpora in different languages in order
to test the possibility of deriving a pitch smoother able to properly work without caring about
language and, possibly, specific corpora and language registers. In principle we can imagine
that it would be possible to train a neural pitch smoother like the one presented in this paper
cross-linguistically to correct the pitch detection errors and apply it to smooth the PDAs profiles
obtained on different languages and registers. This is a pure speculation and we definitively have
to perform new experiments in order to verify this idea. The main problem in performing such
experiments is the availability of speech corpora provided with the laryngograph profiles. We
need definitely a good sample of, at least, different languages to perform these experiments and,
at the time of writing, we have only few corpora of this kind.
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