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Multi-source Transformer for Automatic

Post-Editing of Machine Translation Output

Amirhossein Tebbifakhr⇤
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Matteo Negri⇤⇤
Fondazione Bruno Kessler

Marco Turchi†
Fondazione Bruno Kessler

Automatic post-editing (APE) of machine translation (MT) is the task of automatically
fixing errors in a machine-translated text by learning from human corrections. Recent APE
approaches have shown that best results are obtained by neural multi-source models that correct
the raw MT output by also considering information from the corresponding source sentence. In
this paper, we pursue this objective by exploiting Transformer (Vaswani et al. 2017), the state-
of-the-art architecture in MT. Our approach presents several advantages over previous APE
solutions, both from the performance perspective and from an industrial deployment standpoint.
Indeed, besides competitive results, our Transformer-based architecture is faster to train (thanks
to parallelization) and easier to maintain (thanks to the reliance on a single model rather than
a complex, multi-component architecture). These advantages make our approach particularly
appealing for the industrial sector, where scalability and cost-efficiency are important factors,
complementary to pure performance. Besides introducing a novel architecture, we also validate
the common assumption that training neural APE systems with more data always results in
stronger models. Along this direction, we show that this assumption does not always hold,
and that fine-tuning the system only on small in-domain data can yield higher performance.
Furthermore, we try different strategies to better exploit the in-domain data. In particular, we
adapt reinforcement learning (RL) techniques to optimize our models by considering task-specific
metrics (i.e. BLEU and TER) in addition to maximum likelihood. Our experiments show that,
alone, the multi-source approach achieves slight improvements over a competitive APE system
based on a recurrent neural network architecture. Further gains are obtained by the full-fledged
system, fine-tuned on in-domain data and enhanced with RL optimization techniques. Our best
results (with a single multi-source model) significantly improve the performance of the best (and
much more complex) system submitted to the WMT 2017 APE shared task.

1. Introduction

Recent advances in Machine Translation (MT) have made the post-editing of raw MT
output more cost-efficient in industry settings compared to human translation from
scratch. In this translation as post-editing workflow, firstly the source text is translated
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by means of an MT system. Then, the machine-translated text is revised by a human
expert in order to correct possible errors. Although the reliance on high-quality MT
systems reduces the amount of effort needed by professional translators, state-of-the-art
MT output is not yet perfect: systematic errors may still occur, which require repeated
human corrections of similar mistakes. Automatic Post-Editing (APE) aims to autom-
atize this process and, in doing so, to speed-up, reduce the workload and the overall
costs of professional translation.

The APE task can be cast as a “monolingual translation” problem (i.e. the trans-
lation from raw MT output into publishable material), in which a model is trained,
in a supervised fashion, on datasets comprising (source-text, MT-output, human_post-
edit) triplets. Cast in this way, the problem can be approached thanks to the wealth
of data daily produced by modern industry workflows based on the translation as
post-editing paradigm. In terms of approaches, APE research followed a similar path
to that of MT. Early approaches based on the statistical paradigm (Simard et al. 2007)
were recently replaced by more advanced and effective neural solutions. Among them,
the most effective ones (Chatterjee et al. 2015; Pal et al. 2016) operate by looking not
only at the MT output to be corrected but also at the corresponding source text (i.e.
correction actions are conditioned to both the texts) in order to leverage more infor-
mation, resolve potential ambiguities, and eventually return more reliable corrections.
However, a drawback of these state-of-the-art APE solutions is the reliance on pipelined
architectures (Bojar et al. 2017), whose complexity raises training/maintenance issues
and eventually reduces their usability. Indeed, current top systems typically rely on en-
sembling multiple recurrent neural networks (RNNs) and performing a final re-ranking
step (Chatterjee et al. 2017) to select the most promising correction hypothesis. Though
competitive, such architectures require training and maintaining multiple components,
involving costs that reduce their appeal from the industry perspective.

To overcome these issues, in this paper we first propose a single multi-source APE
system based on Transformer (Vaswani et al. 2017), the state-of-the-art architecture in
MT. Our experiments show that this system can reach state-of-the-art performance on
the benchmark released for the WMT 2017 APE shared task (Bojar et al. 2017). Beside the
better performance, our system has two advantages compared to previous approaches.
First, it is faster to train compared to previous RNN-based solutions. This is due to
the fact that, in contrast to the auto-regressive nature of RNNs, in the Transformer
architecture all the positions in the sentence are processed in parallel. Second, it is easier
to maintain, since only one single model is trained in an end-to-end fashion, and there
is no need for optimizing different components interacting with each other.

Moving a step forward in our research, we then focus on the data dimension.
Indeed, although neural approaches achieve state-of-the-art results (in APE like in MT),
they need to be trained on huge amounts of data. Prior work heavily built on a “the
more the better” assumption (Bojar et al. 2017). Following this assumption, all the
available training data are used and possibly augmented with large synthetic datasets
(Junczys-Dowmunt and Grundkiewicz 2016). The way data are exploited, however, is
still an unexplored problem, leaving large room for research on how to optimize their
use towards better performance. Along this direction, we investigate different ways to
combine gold, in-domain data with large, sub-optimal synthetic corpora. In particular,
focusing on model optimization, we adapt to APE different ways to maximize the
exploitation of small in-domain corpora rather than simply relying on a brute force
processing of all the available data. To this aim, we choose optimization strategies that
are drawn from Reinforcement learning (Ranzato et al. 2016; Shen et al. 2016). The
advantage of these strategies instead of maximum likelihood is twofold. First, to make
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the optimization process more reliable, they directly target task-specific, reference-based
evaluation metrics (BLEU and TER) instead of maximizing the likelihood of the training
data, which can have low correlation with these metrics. Second, being more directly
driven by the final evaluation metrics, they are more suitable to preserve the style of
the reference translations. This property is particularly important in APE, where the
system should mimic the behaviour of human post-editors (i.e. perform the minimum
amount of edit operations required to fix the MT errors), without “over-correcting”
the machine-translated text with unnecessary complete rephrasing. Discouraging the
system to drastically change the MT output (even with post-edits that are per se correct)
is crucial to avoid penalizing the system by automatic evaluation metrics based on
references built from minimal human corrections.

Our main contributions can be summarized as follows:

r We introduce a neural, multi-source APE system based on the Transformer
architecture;r We conduct a set of experiments in order to analyze the effect of using
synthetic and in-domain training data to build a neural APE model;r We explore different reinforcement learning approaches in order to
maximize the usefulness of in-domain data during training;r We evaluate our multi-source Transformer-based system and the proposed
enhancements on a shared evaluation benchmark, on which we achieve
state-of-the-art results.

This research extends previous work by the same authors (Tebbifakhr et al. 2018), by
adding the analysis of using different type of data and different optimization strategies,
which ends to state-of-the-art results in the APE task. The paper is organized as follows.
In Section 2, we review the previous works on APE. In Section 3, we describe our
multi-source architecture based on Transformer and introduce different model opti-
mization strategies drawn from reinforcement learning. In Section 4, we describe our
experimental setup and model configuration. In Section 5, we discuss the results of our
experiments. Finally, Section 6 summarizes the paper with conclusions.

2. Related Work

The APE task was introduced for the first time by Knight and Chander (1994) to
automatically insert the correct articles in Japanese to English translation. Other more
recent works adopted rule-based approaches (Rosa, Mareček, and Dušek 2012), but they
gained limited attention, due to involving extensive manual work in defining the rules.

A statistical approach has been proposed for the first time in (Simard et al. 2007),
in which the problem is cast as a “monolingual translation” task. In particular, raw
MT output is “translated” into better translations by means of a phrase-based MT (PB-
SMT) system trained on (MT_output, post-edited_output) pairs. They showed that APE
components trained on human corrections of machine translated texts yield substantial
improvements to the original MT system output. This results in further investigation
of using PBSMT systems as an APE module for different language directions, over
different underlying MT system architectures, in different domains (Isabelle, Goutte,
and Simard 2007; Dugast, Senellart, and Koehn 2009; Lagarda et al. 2009; Béchara et al.
2012; Rosa, Mareček, and Tamchyna 2013). In (Isabelle, Goutte, and Simard 2007) the
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authors used an APE module for domain adaptation: the idea is to learn from human
corrections not only how to fix MT errors, but also how to adequately translate in a
specific target domain. It has shown to be useful for reducing time, effort and the overall
costs of human translation in industry environments (Aziz, Castilho, and Specia 2012).
Recently, the advent of deep learning (in particular neural machine translation – NMT)
caused a shift from the statistical approaches to more powerful neural approaches. (Pal
et al. 2016; Junczys-Dowmunt and Grundkiewicz 2016) are among the first works in
APE relying on Neural Machine Translation (NMT) models. These papers rely on an
encoder-decoder architecture with attention model. On different datasets, neural APE
models were able to significantly improve the outputs of PBSMT systems. Building
on these positive results, this paper takes a step forward by exploiting Transformer
(Vaswani et al. 2017) (i.e. the state of the art architecture for MT) to approach the APE
task.

Although casting the APE task as a monolingual translation gained lots of attention,
it has a major drawback, which is disregarding the information about the source text.
Indeed, part of the information in the source text can be lost by errors made by the MT
system, which cannot be rectified by only attending on the MT output. To cope with this
issue, Béchara, Ma, and van Genabith (2011) proposed a “source context-aware” variant
of the work by Simard et al. (2007). This approach creates a new input sentence represen-
tation by combining each MT word with its corresponding source word. When tested
with a PBSMT APE system, it results in better performance than using only the MT
sentence. In neural APE, Junczys-Dowmunt and Grundkiewicz (2016) use a log-linear
combination of two NMT models (source-text - post-edited_output and MT_output -
post-edited_output) for translating source and raw MT output to human post-edited
text, both using (Bahdanau, Cho, and Bengio 2015) architecture. In (Chatterjee et al.
2017), they show that the best results can be obtained by a single APE system that
uses two different encoders to exploit the source and MT sentences in APE. In this
paper, we further explore the potential of the multi-source approach by leveraging the
Transformer, a more powerful NMT architecture.

More recently, addressing the problem of over-correction in APE, (Chatterjee et
al. 2018) examine different strategies to combine Quality Estimation (QE) and APE.
The over-correction problem happens when APE system tends to rephrase an already
good translation. To prevent this problem, they propose three different approaches for
integrating QE and APE: i) QE as an activator, which decides if the MT sentence needs to
be post-edited or not, ii) QE as a selector, which selects the best output between the MT
output and the post-edited text , and iii) QE as a guidance, which identifies problematic
parts of the translation for post-editing.

The parameters of most NMT systems and consequently neural APE models are
optimized by maximizing the likelihood of the training data. Indeed, a token-level
cross-entropy loss function is defined to maximize the probability of each token in
the target sequence. However, the performance of these systems is evaluated using
sequence-level evaluation metrics such as BLEU (Papineni et al. 2002) and TER (Snover
et al. 2006). To cope this discrepancy, different reinforcement learning methods such as
REINFORCE (Ranzato et al. 2016), actor-critic (Bahdanau et al. 2016) and minimum risk
training (Shen et al. 2016) have been used to directly maximize these sequence-level
metrics for sequence generation tasks. All the approaches show that integrating the
evaluation metric in the optimization process results in improvement in performance.
These approaches that have been extensively used in NMT, have not been tested in APE.
Exploring them, together with analysing their effectiveness in different data conditions
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is another contribution of this paper. As a final contribution, we present state-of-the-art
results obtained by our architecture on a shared evaluation benchmark.

3. A Neural APE System Based on Transformer

In this section we introduce: i) the Transformer architecture, ii) its multi-source exten-
sion and iii) optimization techniques, drawn from reinforcement learning, targeting the
integration of task-specific metrics in the computation of the loss. Altogether, these
elements represent the core of our approach to neural APE.

3.1 Transformer and its Multi-Source Extension

As discussed in the previous sections, current approaches to APE as a “monolingual
translation” task rely on state-of-the-art architectures developed for neural MT. Typi-
cally, they employ deep recurrent networks (Sutskever, Vinyals, and Le 2014; Bahdanau,
Cho, and Bengio 2015) in the so-called encoder-decoder framework. In this framework,
a sequence of words [x1, x2, .. , xn] is given to an encoder, which maps it to a sequence of
continuous representations, i.e. the hidden state of the encoder. At each time step, based
on these continuous representations and the generated word in the previous time step,
a decoder generates the next word. This process continues until the decoder generates
the end-of-sentence word. More formally, at each time step the decoder predicts the next
word yn, given the context vector c and the previously predicted words y<n by defining
a probability over the translation y as follows:

p(y) =
NY

n=1

p(yn|y<n, c) (1)

The context vector c is a weighted sum computed over the hidden states of the encoder.
The weights used to compute the context vector are obtained by a network called
attention model that finds an alignment between the target and source words (Bah-
danau, Cho, and Bengio 2015). From an efficiency standpoint, a major drawback of these
approaches is that, at each time step, the decoder needs the hidden state of the previous
time step, thus hindering parallelization. Other approaches have been proposed to
avoid this sequential dependency (e.g. using convolution as a main building block) and
make parallelization possible (Gehring et al. 2017; Kalchbrenner et al. 2016). However,
although they can avoid the recurrence, they are not able to properly learn the long term
dependencies between words.

The Transformer architecture introduced in (Vaswani et al. 2017), set a new state-
of-the-art in NMT by completely avoiding both recurrence and convolution. Since the
model does not leverage word-order information, it adds positional encoding to the
input word embeddings to enable capturing word order. This aspect is particularly
important since, in contrast to the auto-regressive nature of RNNs, it allows Transformer
to process all the input positions in parallel, with considerable savings in computation
time.

In Transformer, the attention employed is a multi-headed self-attention, which is a
mapping from (query, key, value) tuples to an output vector. The self-attention is defined
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as follows:

SA(Q,K, V ) = softmax

✓
QKT

p
dk

◆
V (2)

where Q is the query matrix, K is the key matrix and V is the value matrix, dk is the
dimensionality of the queries and keys, and SA is the computed self-attention. The
multi-head attention (MH) is computed as follows:

MH(Q,K, V ) = Concat (head1, . . . , headh)W
O (3)

where h is the number of attention layers (also called “heads"), headi is the self-attention
computed over the ith attention layer and WO is the parameter matrix of dimension
hdv*dmodel. The encoder layers consist of a multi-head self-attention, followed by a
position-wise feed forward network. In the self-attention, the queries, keys and values
matrices come from the previous layer. In the decoder, the layers have an extra encoder-
decoder multi-head attention after the multi-head self-attention, where the key and
value matrices come from the encoder and the query matrix comes from the previous
layer in the decoder. Also, inputs to the multi-head self-attention in the decoder are
masked in order to not attend to the next positions. Finally, a softmax normalization
is applied to the output of the last layer in the decoder to generate a probability
distribution over the target vocabulary.

In order to encode the source sentence in addition to the MT output, we employ
the multi-source method (Zoph and Knight 2016), wherein the model is comprised
of two separate encoders (with a different set of parameters) that respectively provide
continuous representations the source sentence and the MT output. The output of the
two encoders is concatenated and passed as the key in the attention. This helps for a
better representation, in turn leading to more effective attention during decoding time.

3.2 Integrating Task-Specific Metrics in Loss Computation

While in the previous section we overviewed Transformer and its multi-source exten-
sion introduced in (Tebbifakhr et al. 2018), in this section we present a further extension
of the approach. In particular, targeting a more effective model optimization, we discuss
the application of different learning strategies based on reinforcement learning.

In general, neural MT systems are optimized to maximize the likelihood of training
data (i.e. Maximum Likelihood Estimation – MLE). In order to maximize the likelihood
of the given parallel corpus {x(s),y(s)}S

s=1, they use token-level cross-entropy as the
objective function. Therefore, the loss function is defined as follows:

LMLE = �
SX

s=1

N
(s)X

n=1

log p(y(s)
n

|y(s)
<n,x) (4)

where N (s) is the length of s� th target sentence and p(y(s)
n |y(s)

<n,x) is the probability of
generating the n� th word of y(s) given by preceding ground-truth words and x(s).

However, as pointed out by (Ranzato et al. 2016), model optimization by maximiz-
ing the likelihood of training data has two main drawbacks. One is the so-called “ex-
posure bias”: while models are trained only on the distribution of the training data, the
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generation of target words at test time is conditioned to the previous model predictions.
In this way, possible decoding errors at previous time steps will have significant impact
on the following steps making the output generation diverge to completely wrong
sentences (especially in the case of long input sentences). The other is that maximizing
the probability of the next correct word based on the cross-entropy loss computed on
previous word-level errors may have a low correlation with the metrics actually used
for evaluation. To avoid these problems, better approaches should maximize the task-
specific evaluation metrics that actually quantify translation quality. These, in the case
of APE, are BLEU (Papineni et al. 2002) and TER (Snover et al. 2006). However, since
these metrics are not parameterized w.r.t. to the model parameters, it is impossible to
use common gradient descent for model optimization. This problem, which is well-
known in MT, becomes particularly severe in APE, where automatic evaluation metrics
against minimal post-edits (i.e. conservative “human-like” post edits) would penalise
system’s tendency to “over-correct” acceptable portions of the input sentence. Indeed,
in APE, the goal is not to fully re-translate the MT output, which might certainly result
in a good translation. Rather, the goal is to mimic post-editors’ behaviour so to perform
only the necessary corrections, leaving the correct parts of the MT output untouched.
Maximizing BLUE (or minimizing TER) with respect to human post-edits will push
the system towards a conservative correction strategy rather than the potentially more
aggressive maximization of translations’ probability.

In order to directly maximize these evaluation metrics, different approaches have
been introduced, which mainly use reinforcement learning techniques. In RL methods
for MT (Ranzato et al. 2016; Shen et al. 2016), the parameters of the MT system define a
policy that chooses an action, i.e. generating a translation candidate ŷ, and gets a reward
�(ŷ) according to that action, i.e. a measure of output goodness based on the evaluation
metric. The loss function in RL for MT is defined as expected reward, which has to be
maximized:

LRL =

SX

s=1

Eŷ⇠p(.|x(s))�(ŷ)

=

SX

s=1

X

ŷ2Y

p(ŷ|x(s)
)�(ŷ)

(5)

where Y is the set of all possible translation candidates. However, since the size of this
set is exponentially large, it is practically impossible to compute the expected reward.
To bypass this problem, in REINFORCE (Ranzato et al. 2016) the expected reward is
estimated by random sampling only one candidate from this set.

L̂RL =

SX

s=1

p(ŷ|x(s)
)�(ŷ), ŷ ⇠ p(.|x(s)

) (6)

Alternatively, in Minimum Risk Training (MRT – (Shen et al. 2016)), this expected
reward is estimated by subsampling a candidates set.

L̂RL =

SX

s=1

X

ŷ2S

q(ŷ|x(s)
)�(ŷ) (7)
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Table 1

Statistics for the synthetic and in-domain datasets.

train development test

synthetic 4M synthetic 500K in-domain in-domain in-domain 2016 in-domain 2017

4,391,180 526,368 23,000 1,000 2,000 2,000

where q(ŷ|x(s)
) is the normalized probability of the each hypothesis in the subsampled

set S :

q(y|x(s)
) =

p(y|x(s)
)P

y02S p(y
0|x(s))

(8)

In the remainder of this paper, we will explore the application of both the methods
to optimize our APE models on small in-domain data. Although these loss functions
allow to directly optimize the model parameters to maximize task-specific evaluation
metrics, recent studies on reinforcement learning for NMT have shown that their
combination with MLE can yield further improvements (Wu et al. 2018). Moving a
step forward, we will hence build on these findings and, in addition to RL-based loss
functions, we will also experiment with their combination with MLE, so to obtain a
combined loss function that considers both intrinsic word probabilities and extrinsic
task-specific evaluation criteria:

L = LRL + LMLE (9)

4. Experiment Setup

In this section, we outline the data used for training and evaluating our APE system.
Then, we describe the metrics used for evaluation. Finally, we give details about our
baselines, the evaluated models and their specific setting.

4.1 Data

For the sake of a fair comparison with the best performing system at the WMT 2017 APE
shared task (Chatterjee et al. 2017), we use the same training, development and test
WMT datasets. The training data consists of three different corpora. One of them is re-
leased by the task organizers and contains 23K triplets from the Information Technology
domain. The other two are synthetic data created by (Junczys-Dowmunt and Junczys-
Dowmunt 2017). They respectively contain ⇠4M and ⇠500K English-German triplets
generated by a round-trip translation process. In this process, a German-to-English
and an English-to-German phrase-based translation models are respectively used to
first translate German data into English, and then to translate the obtained output
back into German. The original German monolingual data are considered as post-edits,
the English translated data are considered as source sentences, and the German back-
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translated data are considered as machine translation outputs. The development set is
the one released for WMT 2017 APE shared task, which contains 1K in-domain triplets.
We evaluate our models using the two test sets released for WMT 2016 and 2017 APE
shared tasks, each containing 2K in-domain triplets. Table 1 summarizes the statistics of
the datasets. To avoid unknown words and to keep under control the vocabulary size,
we apply byte pair encoding (Sennrich, Haddow, and Birch 2016) to all the data using
32K rules.

4.2 Evaluation Metrics

For evaluation, we use the two official metrics of the WMT APE task, namely: i) TER
(Snover et al. 2006) which is based on edit distance and ii) BLEU, which is the geometric
mean of n-gram precision (Papineni et al. 2002). They are both applied on tokenized
and true-cased data.

4.3 Terms of Comparison

We compare the performance of our Transformer models with two baselines.
Our first baseline (MT Baseline) is the official baseline used in the APE shared tasks;

it mimics the behaviour of a “do-nothing” APE model that leaves all the original MT
outputs untouched. In other words, leaving them unmodified, it reflects the quality of
the original translations sent to APE.

The other baseline (Ens8+RR) is represented by the winning system at the WMT
2017 APE shared task (Chatterjee et al. 2017). This strong multi-component system
comprises 4 different models based on the RNN architecture:

r SRC_PE a single-source model that exploits only the source sentence to
generate the post-edits;r MT_PE a single-source model that only exploits the machine translation
output to generate the post-edits;r MT+SRC_PE a multi-source model that exploits both the source sentence
and the MT output to generate the post-edits;r MT+SRC_PE_TSL another multi-source model with a task-specific loss
function in order to avoid over correction.

For mixing the context vectors of the two encoders, Ens8 + RR uses a merging layer.
This layer applies a linear transformation over the concatenation of the two context
vectors. Chatterjee et al. (2017) compared the performance of these 4 models on the
development set, and reported that MT+SRC_PE outperforms the other models. They
also ensembled the two best models for each configuration to leverage all the models
in a single decoder. On top of that, they also trained a re-ranker (Pal et al. 2017) to re-
order the n-best hypotheses generated by this ensemble. In order to train the re-ranker,
they used a set of features which are mainly based on edit distance. This set includes
the number of insertions, deletions, substitutions and shifts, as well as the length ratios
between MT output and APE hypotheses. It also includes precision and recall of the
APE hypotheses. In Section 5, we compare our multi-source Transformer model with
the ensembled model plus re-ranker (Ens8+RR). We train these models with the same
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Table 2

Comparison between the Transformer-based APE and the best performing system at the WMT
2017 APE shared task.

Systems
Dev2017 Test2016 Test2017

TER (#) BLEU (") TER (#) BLEU(") TER (#) BLEU (")

MT Baseline 24.81 62.92 24.76 62.11 24.48 62.49
Ens8+RR 19.22 71.89 19.32 70.88 19.60 70.07
Transformer 18.97 72.14 18.86 71.27 19.21 70.43

settings reported in (Chatterjee et al. 2017) and, for more architecture details, we point
to that paper.

4.4 System Setting

Similar to (Chatterjee et al. 2017), we initially train a generic Transformer model by
using the ⇠4M synthetic data. Then, for fine-tuning the resulting model, we try different
combinations of the available data. First, in order to be comparable with (Chatterjee
et al. 2017), we fine-tune the generic model on the union of the ⇠500K and the in-
domain training data (multiplied 20 times to give them more importance in the tun-
ing process). Then, to analyze the contribution of each dataset, we also fine-tune the
generic model separately on to ⇠500K instances and on the in-domain data. As we will
see in Section 5, the best performance is obtained by using only the in-domain data,
which puts into perspective the “the more the better” assumption commonly shared
by the APE task participants. In addition to MLE loss function, when fine-tuning the
generic model only on in-domain data, we use the RL-based loss functions described
in Section 3.2 (REINFORCE and MRT), both alone and in combination with MLE
(MLE+REINFORCE and MLE+MRT).

Our Transformer model uses word embedding with 512 dimensions. The decoder
and each encoder have 4 attention layers with 512 units, 4 parallel attention heads, and
a feed-forward layer with 1,024 dimensions. For training the generic model, the model
parameters are updated using the Lazy Adam optimizer (Kingma and Ba 2015), with
mini-batch size of 8,192. The learning rate is varied using a warm-up strategy (Vaswani
et al. 2017) with warm-up steps equal to 8,000. We use a Stochastic Gradient Descent
optimizer with fixed learning rate to 0.5, and mini-batch size of 2,048 tokens. The drop-
out rate and the label smoothing value are set to 0.1. During decoding, we employ
beam search with beam width equal to 10. For both the generic and fine-tuning steps,
we continue the training for 40K steps and choose the best model checkpoints based
on their performance on the development set. We use sentence-level BLEU in order
to compute reward for each generated hypothesis, and for MRT we sample 5 different
hypotheses. For our implementation, we use the OpenNMT-tf toolkit (Klein et al. 2017).

5. Results and Discussion

In order to have a fair comparison between our Transformer-based APE system and the
best performing system in WMT 2017 APE shared task (Chatterjee et al. 2017), we fine-
tuned our generic model trained on ⇠4M synthetic data using the union of the ⇠500K
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Table 3

Performance of the multi-source Transformer-based APE, fine-tuned on different types of data,
on the development set.

Systems TER (#) BLEU (")

MT Baseline 24.81 62.92

Generic 29.64 57.46

Union 18.97 72.14
500K 26.28 61.26
in-domain 18.49 72.23

Table 4

Performance of the Transformer-based APE fine-tuned on in-domain data using different
optimization approaches on development set

Systems TER (#) BLEU (")

MT Baseline 24.81 62.92

MLE 18.49 72.23

REINFORCE 22.96 66.68
MRT 22.92 66.72

MLE+REINFORCE 18.61 72.50

MLE+MRT 18.53 72.49

and in-domain data (multiplied 20). Table 2 reports the results obtained by our system
(Transformer) in comparison to the system by Chatterjee et al. (2017) (Ens8+RR). From
the results, it is clear that our system (Transformer) outperforms (Ens8+RR) on all the
datasets. These results confirm the superiority of our system, which relies on a single
multi-source Transformer model that is far less complex than the state-of-the-art multi-
component architecture previously deployed (an ensemble of 8 different RNN-based
models, supported by an external re-ranking component).

To analyze the contribution of each dataset (⇠500K synthetic and in-domain) to the
improvement gained by fine-tuning, we separately fine-tuned the generic system on
each dataset. As it is reported in Table 3, although fine-tuning only on ⇠500K gains
almost +15 BLEU points over the generic system, it is still lower than the MT Baseline.
On the other hand, fine-tuning on in-domain data does not only outperform the MT
Baseline, but it also achieves better performance than fine-tuning on the union of the
two datasets. This analysis confirms that the assumption of “the more the better” in
using data is not always true and, in contrast to the setting suggested by Chatterjee et
al. (2017), the best performance can be obtained by fine-tuning on only in-domain data.

Furthermore, to maximize the exploitation of the in-domain data, we conducted
a set of experiment using the two RL-based loss functions discussed in Section 3.2
(REINFORCE and MRT) alone and in addition to the MLE loss function. Table 4 reports
the results obtained by using these loss functions on the development set. The results
with both the metrics show that, although fine-tuning using only the RL-based loss
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Table 5

Comparison between the multi-source Transformer-based APE and the best performing system
of the WMT 2017 APE shared task on test sets of 2016 and 2017

Systems
Test2016 Test2017

TER (#) BLEU (") TER (#) BLEU (")

MT Baseline 24.76 62.11 24.48 62.49

Ens8+RR 19.32 70.88 19.60 70.07

MLE 18.73 71.54 18.97 70.82
MLE+REINFORCE 18.74 71.46 18.67 71.12
MLE+MRT 18.82 71.38 18.75 71.18

functions leads to improvements over MT Baseline, their performance is still lower than
the system fine-tuned using only MLE. To understand these results, we look at how the
performance change during the fine-tuning process. The learning curve using RL-based
loss functions is much lower than using MLE. Indeed, based on our observations during
training, there is big jump in performance after few steps of fine-tuning on in-domain
data using MLE, which is missing using RL-based loss functions. This is due to the fact
that, in the RL loss functions, the reward is computed only once after generating the
whole sequence, while MLE computes the loss after generating each word, resulting
in a more coarse-grained feedback. Since, especially in industry settings, it is not cost-
efficient to continue the training to reach to the maximum point using only RL-based
losses, we prefer to use the RL-based loss functions together with MLE. Combining
the two losses yields some improvements in terms of BLEU. Although these gains are
probably no statistically significant, these results suggest that the integration of the
evaluation metric in the optimization function can help the APE system.

In order to confirm our observations on the development set, we also evaluated our
model fine-tuned on in-domain data using the different loss functions. Table 5 shows
the results obtained on the two test sets. On the 2016 test set, the MLE loss function
performs marginally better than MLE+REINFORCE and MLE+MRT. In contrast, on the
2017 test set, the addition of the RL-based loss functions to MLE (REINFORCE and
MRT) outperforms, in both the cases, the system fine-tuned only using MLE.

To conclude, our experiments showed the superiority of our simple system based
on a single multi-source Transformer model compared to the more complex RNN-based
system by Chatterjee et al. (2017). We also demonstrated, in contrast to the previous
approaches, that fine-tuning the system only on in-domain leads to better performance
compared to augmenting the in-domain data with large amounts of synthetic data. Fur-
thermore, by adding the RL-based loss functions (REINFORCE and MRT), the system
can better exploit the gold in-domain data and reach better performance compared to
the use of the MLE loss function alone.

6. Conclusion

In this paper, we approached the Automatic Post-Editing task focusing on effective
solutions suitable for its industrial deployment. To this aim, in contrast to previous
approaches, we developed a multi-source APE system that is: i) fast to train since it is
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based on the Transformer architecture (the state of the art in MT, suitable for parallel
processing) instead of RNNs, and ii) easy to maintain since it is based on one single
model instead of multiple components. Extending our previous work (Tebbifakhr et al.
2018), we conducted a set of experiments to validate the assumption that, from the data
standpoint, more data are always better for training a neural APE system. We found that
this assumption is not always true. In particular, better performance can be obtained by
fine-tuning the system only on gold (i.e. smaller, but higher quality) in-domain corpora.
We also explored different training strategies to maximize the exploitation of small in-
domain data. In particular, we used two different reinforcement learning techniques,
namely REINFORCE and Minimum Risk Training, that allow us to optimize our model
by considering task-specific evaluation metrics. Our experiments on the benchmark
released for the WMT 2017 APE shared task show that, in a similar experimental setup,
our system outperforms the best submissions to the shared task. Moreover, fine-tuning
the system only on in-domain data and leveraging reinforcement learning techniques
in combination with maximum likelihood leads to further improvements.
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Rosa, Rudolf, David Mareček, and Ondřej Dušek. 2012. DEPFIX: A system for automatic
correction of Czech MT outputs. In Proceedings of the Seventh Workshop on Statistical Machine
Translation, pages 362–368, Montréal, Canada, June. Association for Computational Linguistics.
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