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Multitask Learning with Deep Neural
Networks for Community Question
Answering

Daniele Bonadiman⇤

Università di Trento
Antonio Uva⇤⇤

Università di Trento

Alessandro Moschitti†
Amazon

In this paper, we developed a deep neural network (DNN) that learns to solve simultaneously the
three tasks of the cQA challenge proposed by the SemEval-2016 Task 3, i.e., question-comment
similarity, question-question similarity and new question-comment similarity. The latter is the
main task, which can exploit the previous two for achieving better results. Our DNN is trained
jointly on all the three cQA tasks and learns to encode questions and comments into a single
vector representation shared across the multiple tasks. The results on the official challenge test
set show that our approach produces higher accuracy and faster convergence rates than the
individual neural networks. Additionally, our method, which does not use any manual feature
engineering, approaches the state of the art established with methods that make heavy use of it.

1. Introduction

Community Question Answering (cQA) websites enable users to freely ask questions
in web forums and expect some good answers in the form of comments from the
other users. Given the large number of question/answer pairs available on cQA sites,
researchers started to investigate the possibility to exploit user-generated content for
training automatic QA systems. Unfortunately, the text involved in the cQA scenario is
rather noisy, therefore, providing models that outperform the simple bag-of-words rep-
resentation can result rather difficult. The challenge, SemEval-2016 Task 3 “Community
Question Answering", has been designed to study the above problems: the participants
were supposed to build a fully automatic system for cQA. In particular, given a fresh
user question, qnew, and a set of forum questions, Q, answered by a comment set, C, the
main task consists of determining whether a comment c 2 C is a pertinent answer of
qnew or not. This task can be divided into three sub-tasks:

(A) predict if a comment produced in response to a question contains a valid
answer;

⇤ Dept. of Information Engineering and Computer Science (DISI) - Via Sommarive, 9, 38123 Povo, Trento,
Italy. E-mail: d.bonadiman@unitn.it
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(B) re-rank a set of questions according to their relevancy with respect to the
original question; and

(C) predict if a comment produced in response to a previous question posed
on the cQA forum represents a valid answer to a fresh question.

Traditionally, these tasks have been tackled by designing systems/classifiers that
target each task separately. Each classifier accepts a vector encoding a text pair (e.g., a
question/question or a question/answer pair) in input by using many complex lexical
syntactic or semantic features and, then, computing similarity between these represen-
tations. However, this approach suffers from the drawbacks of requiring a “customized”
set of features for each task being solved.

Recent work on deep neural networks (DNNs) for Multitask Learning (MTL) (Col-
lobert and Weston 2008; Liu et al. 2015) showed that is possible to jointly train a general
system that solves different tasks simultaneously. Inspired by the success of MTL, in
this paper, we propose a DNN model that leverages the data from the three cQA tasks
of SemEval. Indeed, as the three tasks are highly related, we claim that cQA can benefit
from this approach. We show that, despite the fact that does not require any feature
engineering, our DNN can approach the performance of the best systems, which use
heavy feature engineering. Additionally, we are going to make the corpora for studying
MTL on this interesting challenge available to the research community.

2. cQA Tasks at SemEval

The research problem issued by SemEval-2016 Task 3 is exemplified by Fig. 2: given
a new question qnew, Task C is about directly retrieving a relevant comment from the
entire community. This can also be achieved by solving Task B, which finds a similar
question, qrel, and then executing Task A, which selects good comments, crel, for qrel.
It should be noted that Task A classifies comments, specifically written by the users for
qrel, whereas Task C classifies comments written by the users for other, sometimes, sim-
ilar questions. This means, it needs to filter out comments that can be partially related
to qnew (because they correctly answer the related question, qrel) but still not correctly
answering qnew. Clearly, Task C classifier needs to tackle a much more semantically
challenging task. Thus, tasks A and C are semantically and computationally rather
different and together with Task B: they constitute an interesting MTL problem since
differences and correlations are played at a very high semantic level.

2.1 Task A: Question-Comment Similarity

Given a question, qrel, and its first 10 comments, crel, in the question threads, rerank the
comments according to their relevance to qrel. Relevancy is defined according to three
classes: (i) good : the comment is definitively relevant; (ii) potentially useful :
the comment is not good, but it still contains related information worth checking; and
(iii) bad : the comment is irrelevant (e.g., it is part of a dialogue or unrelated to the
topic). For evaluation purposes, both potentially useful and bad comments were
considered as bad .
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Figure 1
The 3 tasks of cQA at SemEval: the arrows show the relations between the original and the
related questions and the related comments.

2.2 Task B: Question-Question Similarity

Given a new question, qnew, and its first 10 related questions (retrieved by a search
engine), qrel, rerank them according to their similarity with respect to qnew. Relevancy is
expressed by three classes: (i) perfect match : the new and forum questions request
roughly the same information, (ii) relevant : the new and forum questions ask for
similar information, or (iii) irrelevant : the new and forum questions are completely
unrelated. For evaluation purposes, both perfect match and relevant forum ques-
tions are considered as relevant .

2.3 Task C: New Question-Comment Similarity

Given a new question, qnew, and its first 10 related questions (retrieved by a search
engine), qrel, each associated with its first 10 comments, crel, appearing in its thread,
rerank the 100 comments (10 questions ⇥ 10 comments) according to their relevance
with respect to qnew. Relevancy is defined similarly to task A.

2.4 Dataset

The data for the above-mentioned tasks is distributed in three datasets: train, dev and
test sets. The distribution of questions and comments in each dataset varies across the
different tasks: Task A contains 6,938 related questions and 40,288 comments. Each
comment in the dataset was annotated with a label indicating its relevancy with re-
spect to the related question. Task B contains 317 original questions. For each original
question, 10 related questions were retrieved, summing to 3,169 related questions. Also
in this case, the related questions were annotated with a relevancy label, which tells
if they are relevant with respect to the user original question. Task C contains 317
original questions, together with 3,169 related questions (same as in Task B) and 31,690
comments. Each comment was labelled with its relevancy with respect to the original
question.
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3. A General Deep Architecture for cQA

All the previous tasks are about reranking questions or comments with respect to an
original question. In the following, we describe a general architecture for solving them.

3.1 Deep Architecture for relational learning from pairs of text

A traditional approach to cQA is to learn a different classifiers for solving each of these
three tasks, independently. For example, first a classifier can be trained to rerank a set
of related questions retrieved by a search engine, using their similarity with respect
to the user question (Task B). Then, another classifier can be trained to rerank the list
of comments appearing in the threads of similar questions (Task A). Each of these
classifiers uses a different set of task-dependent features. In this work, we use a neural
network architecture for classifying text pairs. The network is fed using the different
pairs, (qrel, crel), (qnew, qrel) and (qnew, crel), to learn the tasks A, B and C, respectively,
and produces a similarity score that can be used to rerank questions or comments.

It is composed of two main components: (i) two sentence encoders that map input
sentences i into fixed size vectors xsi 2 Rm, and (ii) a feed forward neural network that
computes the similarity between these two sentence vectors.

The sentence encoders are composed of (i) a sentence matrix si 2 Rd⇥|i|, where d
is the size of the word embeddings, obtained by concatenating the vectors of the corre-
sponding words in the input sentence wj 2 si, and (ii) a sentence model f : Rd⇥|i| ! Rm,
which maps the sentence matrix to a fixed size sentence embedding xsi 2 Rm.

The choice of the sentence model plays a crucial role as the resulting intermediate
representation of the input sentences affects the successive steps of computing their
similarity. Previous work in this direction uses different types of sentence models such
as LSTM, distributional sentence model (average of word vectors), and convolutional
sentence model. In particular, the latter is composed of a sequence of convolution
and pooling feature maps, which have achieved the state of the art in various NLP
tasks (Kalchbrenner, Grefenstette, and Blunsom 2014; Kim 2014).

In this paper, we used a CNN sentence model generated by a convolutional op-
eration followed by a k-max pooling layer with k = 1, since it provides comparable
performance to the LSTM on the task of new question-comment similarity, as shown in
Table 2. The sentence encoder, xsi = f(si), outputs a fixed-size embedding of the input
sentence si. The sentence vectors, xsi , are concatenated together and given in input to
a Multi-Layer Perceptron, which is constituted by a non-linear hidden layer and an
sigmoid output layer.

3.2 Injecting Relational Information

All the tasks we consider require to model relations between words present in the two
pieces of text. For this purpose, we encode the relation in forms of discrete features, as
described in (Collobert et al. 2011), i.e., using an additional embedding layer. They aug-
mented the word embedding with the corresponding feature embedding. Thus, given a
word, wj , its final word embedding is defined as wj 2 Rd, where d = dw + dfeat, where
dw is the size of the word embedding and dfeat is the size of the feature embedding.

We use a discrete feature, represented with an embedding of 5 dimensions, to
encode matches between two words in the two input pieces of text. In particular,
we associate each word w in the input sentences with a word overlap index o 2 {0, 1},
where o = 1 means that w is shared by both Q and C (or by the two questions for task
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B), i.e., overlaps, o = 0 otherwise. It should be noted that the embeddings described
here cannot be considered as task specific features, manually handcrafted. They are
part of the network, serve the purpose of injecting relational information between the
representations of the two input texts and can be generally applied to different domains,
data and tasks.

3.3 Adding the rank features

The SemEval problems concern reranking text initially ranked by Google and made
available to the participants for tasks B and C. Considering that the Google rank is
computed using powerful algorithms and a lot of resources, it is essential to encode it
in our networks. There are several methods to achieve this. After some experiments,
we opted for discretizing the rank values in 5 different bins of different sizes, i.e.
[1� 2], [2� 5], [5� 10], [10� 25], [25�1]. The rank feature is added to the joint layer,
where the output of the sentence model is concatenated, using a table lookup opera-
tion. It should be noted that for each task, we use a different relation feature (overlap
embeddings) between each pair of text.

4. MTL for cQA

MTL aims at learning several related tasks at the same time to improve some (or pos-
sibly all) tasks using joint information (Caruana 1997). MTL is particularly well suited
for modeling Task C as it is a composition of tasks A and B, thus, it can benefit from
having both questions qnew and qrel as input to better model the interaction between
the new question and the comment. More precisely, it can use the triplet hqnew, qrel, creli
in the learning process, where the interaction between the triplet members is exploited
during the joint training of the three models of the tasks, A, B and C. In fact, an
improvement on question-comment similarity or on question-question similarity can
lead to an improvement in the task of new question-comment similarity (Task C).

Additionally, each thread in the SemEval dataset is annotated with the labels for all
the three tasks and therefore it is possible to apply joint learning directly.

4.1 Joint Learning Architecture

Our Joint learning architecture is depicted in Figure 2, it is a direct extension of the
architecture proposed for Task C (Section 3.3). It takes the three sentences as input, i.e, a
new question, qnew, the related question, qrel, and its comment, crel, and produces three
fixed size representations, xqnew , xqrel and xcrel , respectively.

These three representations are then concatenated (hj = [xqnew , xqrel , xrrel ]) and fed
to a hidden layer to create a shared representation of the input for the three tasks, hs =
Whj .

The output of this layer, hs is then fed to three independent Multilayer Perceptrons
(MLP) that produce the scores for the three tasks. To directly apply MTL, we use the
binary cross-entropy instead of the max margin loss as our objective function. The
main motivation is that such function is computed based on pairs of positive-negative
examples that cannot be created with multiple labels. At training time, for each example,
the loss is calculated on the three outputs of the network. The final loss is then the sum
of the individual losses for the three tasks.
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Figure 2
Our MTL architecture, where the three sentences are at the bottom. They pass through the
sentence encoders. The output is concatenated and fed to a hidden layer whose output is passed
to three independent multi-layer perceptrons, which produce the scores for the individual tasks.
The double arrow, $, indicates a shared sentence model between qnew and qrel.

4.2 Shared Sentence Models

The SemEval dataset contains ten times less new questions than related questions by
construction. However, all questions, qnew included, are supposed to be of the same na-
ture. Thus we can certainly use a shared text model for modeling better representations
for both new and related questions. Formally, let xd = f(d, ✓) be a sentence model for
document d with parameters ✓, i.e., the embedding weights and the convolutional fil-
ters. In our original formulation, each sentence model uses a different set of parameters
✓qnew , ✓qrel and ✓crel . However, for the question representation, we also used the same
set of parameters ✓q . Such shared sentence model is illustrated by a double arrow in in
Figure 2.

5. Experiments

5.1 Setup

We encode input sentences with fixed-sized vectors using a convolutional operation of
size 5 and a k-max pooling operation with k = 1, i.e., similarly to (Severyn and Moschitti
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Table 1
Percentage of positive examples in the training datasets for each task.

Task A Task B Task C
Train 37.51% 39.41% 9.9%

Train + ED 37.47% 64.38% 21.25%

2015, 2016). We use two non-linear hidden layers (with hyperbolic tangent activation,
Tanh), whose size is equal to the size of the previous layer, i.e., the join layer. We include
information such as word overlaps and rank position as embedding with an additional
lookup table with vectors of size dfeat = 5.

Pre-processing: both questions and comments are tokenized and lowercased (to
reduce the dimensionality of the dictionary and therefore of the embedding matrix).
Moreover, question subject and body are concatenated to create a unique question. For
computational reasons, we opted to limit the size of the input text at 100 words: we did
not observe any degradation in performance.

Word Embeddings: for all the proposed models, we pre-initialize the word embed-
ding matrices with standard skipgram embedding of dimensionality 50 trained on the
English Wikipedia dump using word2vec toolkit (Mikolov et al. 2013).

Training: The network is trained using SGD with shuffled mini-batches using the
rmsprop update rule (Tieleman and Hinton 2012). The model learns until the validation
loss stops improving, with patience p = 10, i.e., the number of epochs to wait before
early stopping, if no progress on the validation set is obtained. In fact, early stop-
ping (Prechelt 1998) allows us to avoid overfitting and improving the generalization ca-
pabilities of the network. For the MTL architecture, we employed two different stopping
criteria. The first is to stop training when the global validation loss does not improve
anymore (the sum of the individual losses of the three tasks). The second, instead, saves
three different models and evaluates them when the individual losses stop improving.
Since the three tasks converge at different epochs, the first method may lead to sub-
optimal results for the individual tasks, but only one model is needed at test time.

To improve generalization and avoid co-adaptation of features, we opted for adding
dropout (Srivastava et al. 2014) between all the layers of the network. We experimented
with different dropout rates (0.2, 0.4) for the inputs and (0.3, 0.5, 0.7) for the hidden
layers obtaining better results with the highest values, i.e., 0.4 and 0.7.

Dataset: Table 1 reports the labels distributions on the train dataset. It is important
to note that the dataset for Task C presents a higher number of negative than positive
examples. For this reason, we automatically extended the training dataset (ED) with
new positive matches for tasks B and C, respectively. This process is done by creating
the (qrel, crel) pairs for each qrel from the training set for Task A and creating triples of
the form (qrel, qrel, crel), where the label for question-question similarity is obviously
positive and the labels for Task C are inherited from those of Task A. The resulting
dataset contains 34, 100 triples and its relevance label distribution is presented in the
last row of Table 1. The extended version of the dataset with the annotation for MTL is
made available for download for comparison purposes 1.

1 https://ikernels-portal.disi.unitn.it/repository/
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Table 2
Impact of CNN vs. LSTM sentence models on the baseline network for Task C.

Model MAP MRR
LSTM 43.91 49.28
CNN 44.43 49.01
CNN Train 44.43 49.01
CNN Train + ED2 44.77 52.07

Table 3
Results on the validation and test set for the proposed models

Models

Task A:
question-comment similarity

Task B:
question-question similarity

Task C:
new question-comment similarity

DEV TEST DEV TEST DEV TEST
MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

Random - - 59.53 67.83 - - 46.98 50.96 - - 15.01 15.19
IR Baseline - - 52.80 58.71 - - 74.75 83.79 - - 40.36 45.83
Kelp - - 79.19 86.42 - - - - - - - -
UH-PRHLT - - - - - - 76.70 83.02 - - - -
SUper-team - - - - - - - - - - 55.41 61.48
hqrel, creli 68.93 76.46 74.73 81.18 - - - - - - - -
hqnew, qreli - - - - 74.19 83.26 73.70 82.13 - - - -
hqnew, creli - - - - - - - - 44.77 52.07 41.95 47.21
hqnew, qrel, creli - - - - - - - - 45.59 51.04 46.99 55.64
hqnew, qrel, creli + $ 70.69 77.19 75.52 82.11 72.92 80.20 72.88 80.58 47.82 53.03 46.45 51.72
MTL (BC) - - - - 74.22 80.40 73.68 81.59 47.80 52.31 48.58 55.77
MTL (AC) 70.11 76.50 75.43 82.46 - - - - 46.34 51.54 48.49 54.01
MTL (ABC) 69.93 76.27 74.42 81.68 70.68 75.85 71.07 80.11 49.63 55.47 49.87 55.73
MTL (ABC)* 70.70 77.48 74.89 81.80 74.21 81.93 72.23 80.33 49.63 55.47 49.87 55.73
MTL (weighted score) - - - - - - - - - - 52.67 55.68

Measures: we report the results of our models in terms of MAP and MRR. Both
provide a higher score if the relevant items are higher in the rank. However, MAP takes
into account the rank of all of the relevant items with respect to the irrelevant ones. MRR
only considers the first relevant retrieved item with respect to all the others.

5.2 Impact of the sentence models

Table 2 shows a comparison between CNN and LSTM sentence models when used in
our general architecture (see Sec. 3) for solving Task C. We derived the results from the
development set 3. We observe that the two sentence models show comparable results.
For the rest of the experiments, we used the CNN sentence model, since it shows faster
convergence rate and more stable results with respect to the LSTM sentence model. In
the second part of Table 2, we demonstrate that using the extended dataset for solving
Task C leads to higher results than the original one. In particular, we noted that there is
an improvement of 3 points in MRR.

2 Extended Dataset for Task C computed using questions from Task A.
3 In this work, the dataset Train-part2 were used as development set.
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5.3 Results of individual models

Table 3 shows the results of our individual and MTL models, in comparison with the
Random and Information Retrieval baselines of the challenge (first grouped row), and
the three-top systems of SemEval 2016, KeLP (Filice et al. 2016), UH-PRHLT (Franco-
Salvador et al. 2016), SUper-team (Mihaylova et al. 2016) (second grouped row).

The third grouped row shows the performance of the individual models when
trained on input pairs, hqrel, creli, hqnew, qreli and hqnew, creli for task A, B and C,
respectively. The model for the three tasks is the same (described in Sec. 3). These results
show that the individual models can generalize well enough on all tasks. In particular,
on Task B, they achieve the best results of our proposed model (the numbers in bold
indicate the best results among the proposed models).

The fourth grouped row illustrates the models exploiting the joint input,
hqnew, qrel, creli, but no joint learning is carried out, i.e., the networks for the different
tasks are trained individually. The results show that a small degradation of performance
happens in Task B, while Task A slightly improves. These variations may be due to the
fact that tasks A and B can be efficiently solved using the standard pairwise approach,
thus the extra text introduced in the model may just add some noise. However, using
the shared sentence model for qnew and qrel of the tasks B and C (indicated with $)
improves the overall performance.

5.4 Results of MTL models

The shared input representation shows good results on all tasks, thus, in the last set of
experiments, we jointly trained (i) tasks B and C, (ii) tasks A and C and finally (iii) the
three tasks together.

The results are reported in the fifth grouped row. It is interesting to note that the
major boost in terms of performance is obtained when we jointly train all the three
tasks. In fact, the MTL architecture improves the individual model in terms of MAP
by about 2 absolute points on the DEV set and by 3 absolute points on the TEST set
for Task C, while the performance on the other tasks tends to degrade. However, if the
three different models are evaluated at different epochs of training, e.g., see MTL(ABC)*,
it is possible to obtain accuracy comparable to the individual models for all the three
tasks. As previously explained, when applying MTL, the individual objective functions
converge at different epochs. Therefore, when the global loss reaches the minimum, it is
possible that individual models are sub-optimal.

Indeed, the comparison between the learning curves (on the development set) for
Task B (Figure 4) and Task C (Figure 5) shows that for the former, models achieve earlier
convergence rate (epoch 2) while for the latter they converge later (epoch 16). Moreover,
Figure 3 shows that the results on Task A are not badly affected by jointly training
models with the other two tasks.

Finally, the learning curves show that our networks trained in MTL tend to have
faster convergence rate than the individual models: this is a very interesting result.

We also experimented with shallower networks and SVMs using the prediction
scores from the different classifiers in a stacking approach, and obtained results far
below the baselines4.

4 We did not include these results as they do not provide interesting findings.
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Figure 3
Learning curves for Task A on the dev. set; dotted and solid lines represent the individual and
multi-task models, respectively.

Comparison with the state of the art. Our models would have ranked 4th on Task C of
the Semeval 2016 competition 5, i.e., the main task of the challenge. In contrast, our
models for the other two tasks, which do not benefit from the overall MTL architecture
would have achieved a middle position (8th). These results are important since our
proposed MTL architecture obtains a placement very close to the top system, without
requiring task-specific features, which in cQA are extremely important, e.g., the thread-
level features.

Finally, one reason of why we do not achieve the state of the art on Task C is due
to the difference between training and test data. Several challenge participants solved
this problem by using a weighted sum between the score of the Task A classifier and the
Google rank as a strong features for modeling Task C. We followed a similar approach
estimating the weight MTL on the dev set and using the computed score to rank the
comments of the test set. This improved the MAP of our MTL by about 2.8 absolute
points on the test set, obtaining a result comparable with the model ranked 2nd on Task
C at the Semeval 2016 competition.

6. Related Work

Previous work related to the topics presented in this paper spans three major research
areas: Question Retrieval (targeting question similarity), Passage Reranking (targeting
question and answer similarity) and MTL. In the following, we will report the most
important works in these areas.

5 http://alt.qcri.org/semeval2016/task3/index.php?id=results
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Figure 4
Learning curves for Task B on the development set; dotted lines represent the individual models,
while the solid lines represent the multi-task ones.
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Figure 5
Learning curves for Task C on the development set; dotted lines represent the individual
models, while the solid lines represent the multi-task ones.

Question-Question Similarity. Determining question similarity remains one of the main
tasks needed to be solved in cQA due to difficult problems such as “lexical gap”. Early
approaches on question similarity used statistical machine translation techniques to
measure similarity between questions. For example, [Jeon, Croft, and Lee 2005] and
[Zhou et al. 2011] used a language models based on word or phrase translation proba-
bilities to estimate similarity between questions. However, effective approaches based
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on statistical machine translation require lots of data to estimate word probabilities.
Language models for question-question similarity were also explored by [Cao et al.
2009]. These models exploit information from the category structure of Yahoo! Answers
when computing similarity between two questions. Instead, [Duan et al. 2008] propose
an approach that identifies the topic and focus in a text and compute similarity between
two input questions by matching the extracted topic and focus information. A different
approach to question-question similarity is provided by [Ji et al. 2012] and [Zhang et
al. 2014]. They use LDA to learn the probability distribution over the topics that gen-
erate the question/answers pairs. Later, this distribution is used to measure similarity
between questions.

Question-Answer Similarity. In recent years, many models have been proposed for com-
puting similarity of an answer with respect to a question. For example, [Yao et al. 2013]
trained a conditional random field based on a set of powerful features, such as tree-
edit distance between question and answer trees: these also enable the extraction of
answers from pre-retrieved sentences. [Heilman and Smith 2010] use a linear classifier
using syntactic features to solve different tasks such as recognizing textual entailment,
paraphrases and answer selection. [Wang, Smith, and Mitamura 2007] propose the
use of Quasi-synchronous grammars to select short answers for TREC questions. This
is done by learning syntactic and semantic transformation from the question to the
answer trees. [Wang and Manning 2010] propose a probabilistic Tree-Edit model with
structured latent variables for solving textual entailment and question answering. An
advanced model based on structural representations was proposed in (Moschitti et al.
2007; Moschitti 2008; Severyn and Moschitti 2012; Severyn, Nicosia, and Moschitti 2013;
Severyn and Moschitti 2013, 2015; Tymoshenko and Moschitti 2015). These model use
SVM with kernels to learn structural patterns between questions and answers encoded
in form of shallow syntactic parse trees.

Finally, [Wang and Nyberg 2015] trained a long short-term memory model for
selecting answers to TREC questions. Their model takes words from question and
answer sentences as input and returns a score measuring the relevancy of an answer
with respect to a given question. A recent work close to ours is (Guzmán, Màrquez, and
Nakov 2016), where the authors build a neural network for solving Task A of SemEval.
However, this does not approach the problem as MTL.

Related work on MTL. A good overview on MTL, i.e., learning to solve multiple tasks
by using a shared representation with mutual benefit, is given in (Caruana 1997). [Col-
lobert and Weston 2008] trained a convolutional NN with MTL which, given an input
sentence, performs many sequence labeling tasks. They showed that jointly training
their system on different tasks, such as speech tagging, named entity recognition, etc.,
significantly improves the performance on the main task, i.e., semantic role labeling,
without requiring hand-engineered features.

[Liu et al. 2015] is the most close work to ours. They used multi-task deep neural
networks to map queries and documents into semantic vector representations. This
representation is later used into two tasks: query classification and question-answer
reranking. The results showed a competitive gain over strong baselines. In our work,
we have presented an architecture that can also exploit joint representation of question
and comments, given the strong interdependencies among the different SemEval Tasks.
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7. Conclusion

In this paper we proposed several Deep Neural Networks for the task of automatic cQA.
Our main result is a network that can effectively exploit the characteristics of the cQA
task to carry out interesting MTL. Our network designed and trained in an MTL setting
shows better accuracy and a higher convergence rate than the models independently
trained. The results show that our MTL model approaches the performance of the
models participating at the SemEval 2016 cQA competition. It should be noted that all
the other challenge systems use domain specific features, which are both very important
but also rather costly to engineer.

In the future, we would like to use more effective features and combine them with
other machine learning methods.
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