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Question Dependent Recurrent Entity
Network for Question Answering

Andrea Madotto⇤ ⇤⇤

The Hong Kong University of Science
and Technology

Giuseppe Attardi†
University of Pisa

Question Answering is a task which requires building models capable of providing answers
to questions expressed in human language. Full question answering involves some form of
reasoning ability. We introduce a neural network architecture for this task, which is a form
of Memory Network, that recognizes entities and their relations to answers through a focus
attention mechanism. Our model is named Question Dependent Recurrent Entity Network
and extends the Recurrent Entity Network by exploiting aspects of the question during the
memorization process. We validate the model on both synthetic and real datasets: the bAbI
question answering dataset and the CNN & Daily News reading comprehension dataset. In
our experiments, our models improved the existing Recurrent Entity Network and achieved
competitive results in both dataset.

1. Introduction

Question Answering is a task that requires capabilities beyond simple Natural Lan-
guage Processing since it involves both linguistic techniques and inference abilities.
Both the document sources and the questions are expressed in natural language, which
is ambiguous and complex to understand. To perform such a task, a model needs in
fact to understand the underlying meaning of a text. Achieving this ability is quite
challenging for a machine since it requires a reasoning phase (chaining facts, basic
deductions, etc.) over knowledge extracted from the plain input data. In this article,
we focus on two Question Answering tasks: a Reasoning Question Answering (RQA)
and a Reading Comprehension (RC). These tasks are tested by submitting questions to
be answered directly after reading a piece of text (e.g. a document or a paragraph).

Recent progress in the field has been possible thanks to machine learning algo-
rithms which automatically learn from large collections of data. Deep Learning (LeCun,
Bengio, and Hinton 2015) algorithms achieve the current State-of-The-Art in our tasks
of interest. A particularly promising approach is based on Memory Augmented Neural
Networks. These networks are also known as Memory Networks (Weston, Chopra, and
Bordes 2015) or Neural Turing Machines (Graves, Wayne, and Danihelka 2014). In the
literature the RQA and RC tasks are typically solved by different models. However, the
two tasks share a similar scope and structure. We propose to tackle both with a model
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called Question Dependent Recurrent Entity Network (QDREN), which improves over the
model called Recurrent Entity Network (Henaff et al. 2017).

Our major contributions are: 1) exploiting knowledge of the question for storing
relevant facts in memory, 2) adding a tighter regularization scheme, and 3) changing the
activation functions. We test and compare our model on two datasets, bAbI (Weston et
al. 2016) and CNN & Daily News (Hermann et al. 2015), which are standard benchmark
for both tasks. The rest of the paper is organized as follows: section Related outlines the
models used in QA tasks, while section Model discusses the proposed QDREN model.
Section Experiments and Results shows training details and performance achieved by our
model. The section Analysis reports a visualization with the aim to explain the obtained
results. Finally, section Conclusions summarizes the work done.

2. Related Work

2.1 Reasoning Question Answering

A set of synthetic tasks, called bAbI (Weston et al. 2016), has been proposed for testing
the ability of a machine in chaining facts, performing simple inductions or deductions.
These tasks became a standard benchmark for measuring reasoning QA, several exam-
ples are shown in Table 1 1. The dataset is available in two sizes, 1K and 10K training
samples, and in two settings, i.e. with and without supporting facts. The latter allows
knowing which facts in the input are needed for answering the question (i.e. a stronger
supervision). Obviously, the 1K sample setting with no supporting facts is quite hard to
handle, and it is still an open research problem. Memory Network (Weston, Chopra, and
Bordes 2015) was one of the first models to provide the ability to explicitly store facts
in memory, achieving good results on the bAbI dataset. An evolution of this model is
the End to End Memory Network (Sukhbaatar et al. 2015), which allows for end-to-end
training. This model represents the State-of-The-Art in the bAbI task with 1K training
samples. Several other models have been tested in the bAbI tasks achieving competitive
results, such as Neural Turing Machine (Graves, Wayne, and Danihelka 2014), Differ-
entiable Neural Computer (Graves et al. 2016) and Dynamic Memory Network (Kumar
et al. 2015, Xiong, Merity, and Socher 2016). Several other baselines have also been
proposed (Weston et al. 2016), such as: an n-gram (Richardson, Burges, and Renshaw
2013) models, an LSTM reader and an SVM model. However, some of them still required
strong supervision by means of the supporting facts.

2.2 Reading Comprehension

Reading Comprehension is defined as the ability to read some text, process it, and un-
derstand its meaning. A impending issue for tackling this task was to find suitably
large datasets with human annotated samples. This shortcoming has been addressed
by collecting documents which contain easy recognizable short summary, e.g. news ar-
ticles, which contain a number of bullet points, summarizing aspects of the information
contained in the article. Each of these short summaries is turned into a fill-in question
template, by selecting an entity and replacing it with an anonymized placeholder.

Three datasets follows this style of annotation: Children’s Text Books (Hill et al. 2016),
CNN & Daily Mail news articles (Hermann et al. 2015), and Who did What (Onishi et al.

1 Interested readers can find all the tasks examples in (Weston et al. 2016)
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Table 1
bAbI dataset examples.

Task Counting Lists/Sets

Story

Daniel picked up the football.
Daniel dropped the football.
Daniel got the milk.
Daniel took the apple.

Daniel picks up the football.
Daniel drops the newspaper.
Daniel picks up the milk.
John took the apple.

Question How many objects is Daniel holding? What is Daniel holding?

Answer Two Milk, football

Task Three Argument Relations Yes/No Questions

Story
Mary gave the cake to Fred.
Fred gave the cake to Bill.
Jeff was given the milk by Bill.

John moved to the playground.
Daniel went to the bathroom.
John went back to the hallway.

Question Who gave the cake to Fred? Is John in the playground?

Answer Mary No

2016). It is also worth to mention Squad (Rajpurkar et al. 2016), a human annotated
dataset from Stanford NLP group. Memory Networks, described in the previous sub-
section, has been tested (Hill et al. 2016) on both the CNN and CBT datasets, achieving
good results. The Attentive and Impatient Reader (Hermann et al. 2015) was the first model
proposed for the CNN & Daily Mail dataset, and it is therefore often used as a baseline.
While this model achieved good initial results, shortly later a small variation to such
model, called Standford Attentive Reader (Chen, Bolton, and Manning 2016), increased its
accuracy by 10%. Another group of models are based on an Artificial Neural Network
architecture called Pointer Network (Vinyals, Fortunato, and Jaitly 2015). Attentive Sum
Reader (Kadlec et al. 2016) and Attention over Attention (Cui et al. 2017) use a similar
idea for solving different reading comprehension tasks. EpiReader (Trischler et al. 2016)
and Dynamic Entity Representation (Kobayashi et al. 2016), partially follow the Pointer
Network framework but they also achieve impressive results in the RC tasks. Also for
this task several baselines, both learning and non-learning, have been proposed. The
most commonly used are: Frame-Semantics, Word distance, and LSTM Reader (Hermann
et al. 2015) and its variation (windowing etc.).

3. Proposed Model

Our model is based on the Recurrent Entity Network (REN) (Henaff et al. 2017) model.
The latter is the only model able to pass all the 20 bAbI tasks using the 10K sample size
and without any supporting facts. However, this model fails many tasks with the 1K
setting, and it has not been tried on more challenging RC datasets, like the CNN news
articles. Thus, we propose a variant to the original model called Question Dependent
Recurrent Entity Network (QDREN )2. This model tries to overcome the limitations of

2 An implementation is available at https://github.com/andreamad8/QDREN
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the previous approach. The model consists in three main components: Input Encoder,
Dynamic Memory, and Output Module.

The training data consists of tuples {(xi, yi)}ni=1, with n equal to the sample size,
where: xi is composed by a tuple (T, q), where T is a set of sentences {s1, . . . , st}, each
of which has a maximum of m words, and q a single sentence with k words representing
the question. Instead, yi is a single word that represents the answer.
The Input Encoder transforms the set of words of a sentence st and the question q into a
single vector representation by using a multiplicative mask. Let’s define E 2 R|V |⇥d the
embedding matrix3, that is used to convert words to vectors, i.e. E(w) = e 2 Rd. Hence,
{e1, . . . , em} are the word embedding of each word in the sentence st and {e1, . . . , ek}
the embedding of the question’s words. The multiplicative masks for the sentences are
defined as f (s) = {f (s)

1 , . . . , f
(s)
k } and f

(q) = {f (q)
1 , . . . , f

(q)
k } for the question, where each

fi 2 Rd. The encoded vector of a sentence is defined as:

st =
mX

r=1

er � f
(s)
r q =

kX

r=1

er � f
(q)
r

Dynamic Memory stores information of entities present in T . This module is very similar
to a Gated Recurrent Unit (GRU) (Cho et al. 2014) with a hidden state divided into
blocks. Moreover, each block ideally represents an entity (i.e. person, location etc.),
and it stores relevant facts about it. Different datasets may require different number
of blocks, in the experiment section we will further discuss this issue. Each block i is
made of a hidden state hi 2 Rd and a key ki 2 Rd, where d is the embedding size. The
Dynamic Memory module is made of a set of blocks, which can be represent with a
set of hidden states {h1, . . . , hz} and their correspondent set of keys {k1, . . . , kz}. The
equation used to update a generic block i are the following:

g
(t)
i =�(sTt h

(t�1)
i + s

T
t k

(t�1)
i + s

T
t q) (Gating Function)

ĥ
(t)
i =�(Uh

(t�1)
i + V k

(t�1)
i +Wst) (Candidate Memory)

h
(t)
i =h

(t�1)
i + g

(t)
i � ĥ

(t)
i (New Memory)

h
(t)
i =h

(t)
i /kh(t)

i k (Reset Memory)

where � represents the sigmoid function, � a generic activation function which can
be chosen among a set (e.g. sigmoid, ReLU, etc.). g(t)i is the gating function which
determines how much the ith memory should be updated, and ĥ

(t)
i is the new

candidate value of the memory to be combined with the existing one h
(t�1)
i . The matrix

U 2 Rd⇥d, V 2 Rd⇥d, W 2 Rd⇥d are shared among different blocks, and are trained
together with the key vectors. The addition of the s

T
t q term in the gating function is

our main contribution. We add such term with the assumption that the question can be
useful to focus the attention of the model while analyzing the input sentences.

3 Where |V | is the vocabulary size and d the embedding dimension.
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Figure 1
Conceptual schema of the QDREN model, with three memory blocks. In input a sample taken
from bAbI task dataset.

The Output Module creates a probability distribution over the memories’ hidden
states using the question q. Thus, the hidden states are summed up, using the
probability as weight, to obtain a single state representing all the input. Finally, the
network output is obtained by combining the final state with the question. Let us define
R 2 R|V |⇥d, H 2 Rd⇥d, ŷ 2 R|V |, z is the number of blocks, and � can be chosen among
different activation functions. Then, we have:

pi =Softmax(qThi)

u =
zX

j=1

pjhj

ŷ =R�(q +Hu)

The model is trained using a cross entropy loss H(ŷ, y) plus L2 regularisation term,
where y is the one hot encoding of the correct answer. The sigmoid function and the L2
term are two novelty added to the original REN. Overall, the trainable parameters are:

⇥ = [E, f
(s)

, f
(q)

, U, V,W, k1, . . . , kz, R,H]

where f (s) refers to the sentence multiplicative masks, f (q) to the question multiplicative
masks, and each ki to the key of a generic block i. The number of parameters is domi-
nated by E and R, since they depend on the vocabulary size. However, R is normally
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is much smaller than E like in the CNN dataset, in which the prediction is made on a
restricted number of entities4. All the parameters are learned using the Backpropagation
Through Time (BPTT) algorithm. A schematic representation of the model is shown in
Figure 1.

4. Experiments and Results

Our model has been implemented using TensorFlow v1.1 (Abadi et al. 2015) and the
experiments have been run on a Linux server with 4 Nvidia P100 GPUs. As mentioned
earlier, we tested our model in two datasets: the bAbI 1k sample and the CNN news ar-
ticles. The first dataset have 20 separate tasks, each of which has 900/100/1000 training,
validation, and test samples. Instead, the second one has 380298/3924/3198 training,
validation and test samples. We kept the original splitting to compare our results with
the existing ones.

bAbI:. in these tasks, we fixed the batch size to 32, we did not use any pre-trained word
embedding, and we used Adam (Kingma and Ba 2015) optimizer. In all the experiment
we used 20 blocks of memory since it is equal to the maximum number of entity in
each story. We have also clipped the gradient to a maximum of 40 (to avoid gradient
explosion), and we set the word embedding size to 100, as it has also been suggested in
the original paper. We have also implemented an early stopping method, which stop
the training ones the validation accuracy does not improve after 50 epochs. Several
values for the hyper-parameter have been tried and, for each task, we selected the
setting that achieved the highest accuracy in validation. Once we selected the best
model, we estimate its generalization error using the provided Test set. Table 2 shows
an example of the dataset and the used hyper-parameters. We compared our results

Table 2
On the left an example of the bAbI task, and on the right the selected model hyper-parameters.

Story Question

John picked up the apple
John went to the office
John went to the kitchen
John dropped the apple

Where was the apple
before the kitchen?

Answer
office

Parameter Values

Learning Rate (↵) 0.01,0.001,0.0001
Number of Blocks 20,30,40,50

L2 reg. (�) 0,0.001,0.0001
Dropout (Dr) 0.3,0.5,0.7

with four models: n-gram model, LSTM, original REN (with no question in the gating
function) and End To End Memory Network (MemN2N) (Sukhbaatar et al. 2015), which is
currently the State-Of-The-Art in this setting. To the best of our knowledge we achieved
the lowest number of failed tasks, failing just 8 tasks compared with the previous State-
Of-The-Art which was 11. Comparing our QDREN with the original Recurrent Entity
Network (REN) we achieved, on average, an improvement of 11% in the average error
rate and we passed 7 tasks more. Table 3 shows the error rate5 in the test set obtained
using each compared model, and the hyper-parameter setting used in each task. We
improve the mean error compared to the original REN, however we still do know reach
the error rate achieved by the End To End Memory Network (even if we passed more

4 Therefore R 2 R|entities|⇥d

5 The error is the percentage of wrong answers.
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Table 3
Test set error rate comparison between n-gram, LSTM, QDREN, REN and End To End Memory
Network (MemN2N). All the results have been taken from the original articles. In bold we
highlight the task in which we greatly outperform the other models. On the right the
hyper-parameters used in QDREN.

Task n-gram LSTM MemN2N REN QDREN Blk � ↵ Dr
1 64 50 0 0.7 0 20 0 0.001 0.5
2 98 80 8.3 56.4 67.6 30 0 0.001 0.5
3 93 80 40.3 69.7 60.8 40 0 0.001 0.5
4 50 39 2.8 1.4 0 20 0 0.001 0.5
5 80 30 13.1 4.6 2.0 50 0 0.001 0.2
6 51 52 7.6 30 29 30 0 0.001 0.5
7 48 51 17.3 22.3 0.7 30 0 0.001 0.5
8 60 55 10 19.2 2.5 20 0.001 0.001 0.7
9 38 36 13.2 31.5 4.8 40 0.0001 0.001 0.5

10 55 56 15.1 15.6 3.8 20 0 0.001 0.5
11 71 28 0.9 8 0.6 20 0 0.001 0.5
12 91 26 0.2 0.8 0 20 0 0.0001 0.5
13 74 6 0.4 9 0.0 40 0.001 0.001 0.7
14 81 73 1.7 62.9 15.8 30 0.0001 0.001 0.5
15 80 79 0 57.8 0.3 20 0 0.001 0.5
16 57 77 1.3 53.2 52 20 0.001 0.001 0.5
17 54 49 51 46.4 37.4 40 0.001 0.001 0.5
18 48 48 11.1 8.8 10.1 30 0.0001 0.001 0.5
19 10 92 82.8 90.4 85 20 0 0.001 0.5
20 24 9 0 2.6 0.2 20 0 0.001 0.5

Failed Tasks (>5%): 20 20 11 15 8
Mean Error: 65.9 50.8 13.9 29.6 18.6

tasks). It is worth to notice the following two facts: first, in task 14 and 18 the error is
very close to the threshold for passing the task (5%); second, in task 2, we achieved a
slightly worse result (10% error more) with respect to the original REN.

CNN news articles:. in this dataset, the entities in the original paragraph are replaced by
an ID, making the task even more challenging. The CNN dataset is already tokenized
and cleaned, therefore we did not apply any text pre-processing. As it was done in
other models, the set of possible answers is restricted to the set of hidden entities in the
text, that are much less, around 500, compared to all the words (120K) in the vocabulary.
Compared to the model used for bAbI, we changed the activation function of the output
layer, using a sigmoid instead of parametric ReLU, since after several experiments we
noticed that such activation was hurting the model performance. Moreover, the input
was not split into sentences, thus we divided the text into sentences using the dot token
("."). sentence splitting in general is itself a challenging task, but in this case the input
was already cleaned and normalised. However, the sentence may be very long, thus we
introduced a windowing mechanism. The same approach has been used in the End To
End Memory Network (Sukhbaatar et al. 2015) as a way to encode the input sentence. This
method takes each entity marker (@entityi) and it creates a window of b words around
it. Formally, {w

i� (b�1)
2

, . . . , wi, . . . , wi+ (b�1)
2

}, where wi represent the entity of interest.
For the question, a single window is created around the placeholder marker (the word
to predict). Moreover, we add 2(b� 1) tokens for the entities at the beginning and at
the end of the text. To check whether our QDREN could improve the existent REN
and whether the window-based approach makes any difference in comparison with
plain sentences, we separately trained four different models: REN+SENT, REN+WIND,
QDREN+SENT and QDREN+WIND. Where SENT represent simple input sentences,
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and WIND the window as a input. For each of this model, we conduct a separated
model selection using a various number of hyper-parameters. Table 4 shows an example
of the dataset and the used hyper-parameters. As for the bAbI task, we used early

Table 4
On the left, an example from CNN news article, and on the right, the model selection
Hyper-parameters.

Story Question
( @entity1 ) @entity0 may
be @entity2 in the popular
@entity4 superhero films
but he recently dealt in some
advanced bionic technology ...

"@placeholder" star
@entity0 presents a
young child
Answer
@entity2

Parameter Values
Learning Rate (↵) 0.1,0.01,0.001,0.0001

Window 2,3,4,5
Number of Blocks 10,20,50,70,90

L2 reg. (�) 0.0,0.001,0.0001,0.00001
Optimizer Adam,RMSProp
Batch Size 128,64,32

Dropout (Dr) 0.2,0.5,0.7,0.9

stopping, ending the training once the validation accuracy does not improve for 20
epochs. Since each training required a large amounts of time (using a batch size of 64
an epoch takes around 7 hours), we opted for a random search technique (Bergstra and
Bengio 2012), and we used just a sub-sample of the training set, i.e. 10K sample, for the
model selection, but we still keep the validation set as it was. Obviously, this is not an
optimal parameter tuning, since the model is selected on just 10K samples. Indeed, we
noticed that the selected model, which is trained using all the samples (380K), tends
to under-fit. However, it was the only way to try different parameters in a reasonable
amount of time. Moreover, we also limited the vocabulary size to the most common
50K words, and we initialize the embedding matrix using Glove (Pennington, Socher,
and Manning 2014) pre-trained word embedding of size 100. As for bAbI, we used 20
blocks of memory. As before, we selected the models that achieved the highest accuracy

Table 5
Test set accuracy comparison between REN+SENT, QDREN+SENT, REN+WIND and
QDREN+WIND. We show the best hyper-parameters picked by the model selection, and the
accuracy values.

REN+SENT QDREN+SENT REN+WIND QDREN+WIND

Number of Blocks 20 10 50 20
Window - - 5 4

Learning Rate 0.001 0.001 0.0001 0.01
Optimizer Adam Adam RMSProp RMSProp

Dropout 0.7 0.2 0.5 0.5
Batch Size 128 64 64 64

� 0.0001 0.001 0.0001 0.0001

Loss Training 2.235 2.682 2.598 2.216
Loss Validation 2.204 2.481 2.427 1.885

Loss Test 2.135 2.417 2.319 1.724

Accuracy Training 0.418 0.349 0.348 0.499
Accuracy Validation 0.420 0.399 0.380 0.591

Accuracy Test 0.420 0.397 0.401 0.628

in the validation set, and then we estimate its generalization error using the provided
test set. The selected models, with their hyper-parameters, are shown in Table 5. The
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Table 6
Validation/Test accuracy (%) on CNN dataset. All the reported results are taken from the
original articles: Max Freq.,Frame-semantic, Attentive Reader, Word distance, Impatient Reader,
LSTM Reader from (Hermann et al. 2015), Attentive Reader(Chen, Bolton, and Manning 2016),
AS for Attentive Sum(Kadlec et al. 2016), AoA for Attention over Attention (Cui et al. 2017), and
DER for Dynamic Entity Representation(Kobayashi et al. 2016).

Val Test Val Test Val Test
Max Freq. 30.5 33.2 MemN2N 63.4 66.8 AS Reader 68.6 69.5

Frame-semantic 36.3 40.2 Attentive Reader 61.6 63 AoA 73.1 74.4
Word distance 50.5 50.9 Impatient Reader 61.8 63.8 EpiReader 73.4 74
LSTM Reader 55 57 Stanford (AR) 72.5 72.7 DER 71.3 72.9

best accuracy6 is achieved by QDREN+WIND with a value of 0.628, while all other
models could not achieve an accuracy greater than 0.42. The window-based version
without question supervision could not achieve an accuracy higher than 0.401. Indeed,
saving only facts relative to the question seems to be the key to achieving a good score
in this task. We also noticed that using plain sentences, even with QDREN, we cannot
achieve a higher accuracy. This might be due to the sentence encoder, since just using
the multiplicative masks does not provide enough expressive power for getting key
features of the sentence. Moreover, we notice that the accuracy achieved in the training
set is always lower than that in the validation and test set. The same phenomenon is
present also in other models, in our particular case this might be due to the strong
regularization term used in our models. Our model achieves an accuracy comparable
to the Attentive and Impatient Reader (Hermann et al. 2015), but not yet State-Of-The-Art
model (i.e. Attention over Attention (AoA)). It is worth noting though that our model is
much simpler and it goes through each paragraph just once. A summary of the other
models’ results are shown in Table 6.

5. Analysis

To better understand how our proposed model (i.e. QDREN) works and how it
improves the accuracy of the existing REN, we studied the gating function behavior.
Indeed, the output of this function decides how much and what we store in each
memory cell, and it is also where our model differs from the original one. Moreover,
we trained the QDREN and the original REN using the bAbI task number 1 using 20
memory blocks. The latter mention number of blocks has been selected heuristically
by knowing that the maximum number of entity in the facts is 20. We pick up this
task since both models pass it, and it is one of the simplest, which also allows to better
understand and visualize the results. Indeed, we have tried to visualize other tasks but
the result was difficult to understand since there were too many sentences in input and
it was difficult to understand how the gate opened. The visualization result is shown
in Figure 2, where we plotted the activation matrix for both models, using a sample
of the validation set. In these plots, we can notice how the two models learn which
information to store.

In Figure 2 (a), we notice that the QDREN is opening the gates just when in the

6 Percentage of correct answers.
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sentence appears the entity named Mary. This because such entity is also present in the
question (i.e., "where is Mary?"). Even though the model is focusing on the right entity,
its gates are opening all at the same times. In fact, we guess that a sparser activation
would be better since it may have modeled which other entities are relevant for the
final answer. Instead, the gaiting activation of the original REN is sparse, which is good
if we would like to learn all the relevant facts in the text. Indeed, the model effectively
assigns a block to each entity and it opens the gates just ones such entity appears in
the input sentences. For example, in Figure 2 (b) the block cell number 13 supposedly

(a)

(b)

Figure 2
Heatmap representing the gating function result for each memory block. In the y-axes represents
the memory block number (20 in this example), in the x-axes, there are the sentences in the input
divided into time steps, and at the top, there is the question to be answered. Darker color means
a gate more open (values close to 1) and lighter colour means the gate less open. (a) shows
QDREN and (b) shows REN.
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represents the entity Sandra, since each sentence in which this name appears the gate
function of the block fully opens (value almost 1). Futher, we can notice the same
phenomenon with the entity John (cell 10), Daniel (cell 4), and Mary (cell 14). Other
entities (e.g., kitchen, bathroom, etc.) are more difficult to recognize in the plot since
their activation is less strong and probably distributes this information among blocks.

6. Conclusion

In this paper we presented the Question Dependent Recurrent Entity Network, used for
reasoning and reading comprehension tasks. This model uses a particular RNN cell in
order to store just relevant information about the given question. In this way, in com-
bination with the original Recurrent Entity Network (keys and memory), we improved
the success rate in the bAbI 1k task and achieved promising results in the Reading
comprehension task on the CNN & Daily news dataset. However, we believe that there
are still margins for improving the behavior for the proposed cell. Indeed, the cell has
not enough expressive power to make a selective activation among different memory
blocks (notice in Figure 2 (a) the gates open for all the memories).
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