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Distributed Representations of Lexical Sets
and Prototypes in Causal Alternation Verbs

Edoardo Maria Ponti∗
Universitá di Cambridge

Elisabetta Jezek∗∗

Università degli Studi di Pavia

Bernardo Magnini†
Fondazione Bruno Kessler

Lexical sets contain the words filling an argument slot of a verb, and are in part determined
by selectional preferences. The purpose of this paper is to unravel the properties of lexical sets
through distributional semantics. We investigate 1) whether lexical set behave as prototypical
categories with a centre and a periphery; 2) whether they are polymorphic, i.e. composed by sub-
categories; 3) whether the distance between lexical sets of different arguments is explanatory
of verb properties. In particular, our case study are lexical sets of causative-inchoative verbs in
Italian. Having studied several vector models, we find that 1) based on spatial distance from the
centroid, object fillers are scattered uniformly across the category, whereas intransitive subject
fillers lie on its edge; 2) a correlation exists between the amount of verb senses and that of
clusters discovered automatically, especially for intransitive subjects; 3) the distance between
the centroids of object and intransitive subject is correlated with other properties of verbs, such
as their cross-lingual tendency to appear in the intransitive pattern rather than transitive one.
This paper is noncommittal with respect to the hypothesis that this connection is underpinned
by a semantic reason, namely the spontaneity of the event denoted by the verb.

1. Introduction

The arguments of a verb are the “slots” that have to be filled to satisfy its valency
(subject, object, etc.). Hence, verbs display so-called selectional restrictions over the pos-
sible fillers occupying these slots (Séaghdha and Korhonen 2014), which play a major
role in determining the verb meaning. Moreover, the selection of the fillers happens in
accordance with the different senses of a verb. Lists of the possible fillers occurring with
a certain pattern of a verb can be collected in a corpus-driven fashion: these lists are
named “lexical sets” (Hanks 1996).

Several approaches in Computational Linguistics managed to inspect lexical sets
and their patterns of variation (Montemagni, Ruimy, and Pirrelli 1995; McKoon and
Macfarland 2000), as well as to use them as features for verb classification (McCarthy
2000; Joanis, Stevenson, and James 2008). On the other hand, selectional preferences
were employed for many tasks in Natural Language Processing, including Word Sense
Disambiguation (Resnik 1997; McCarthy and Carroll 2003, inter alia), Metaphor Pro-
cessing (Shutova, Teufel, and Korhonen 2013), Information Extraction (Pantel et al.
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2007), Discourse Relation Classification (Ponti and Korhonen 2017), Dependency Pars-
ing (Mirroshandel and Nasr 2016), and Semantic Role labeling (Gildea and Jurafsky
2002; Zapirain et al. 2013).

We aim at establishing a new method of analysis for lexical sets. In particular,
we address the following key questions: are lexical sets Aristotelian categories (yes-no
membership) or prototypical categories (graded membership)? If the latter holds true,
are the fillers arranged homogeneously or do they cluster around some sub-categories?
Finally, is the relation between lexical sets from different patterns of a same verb infor-
mative about this verb’s meaning? We address these questions under a distributional
semantics perspective. In fact, distributional semantics provides a mapping between
each filler and a vector lying in a continuous multi-dimensional space. By virtue of
this, lexical sets can be treated as continuous categories, where members can be either
central or peripheral. Moreover, this allows to quantify the distance between vectors
with spatial measures.

In order to test the relevance for linguistic theory of this approach, we focus on a
case study, namely verbs undergoing the causative-inchoative alternation. Solving the
above-mentioned issues may help clarifying some of the vexed questions about this
class of verbs. These show both transitive and intransitive patterns: the object of the
former and the subject of the latter play the same semantic role of patient. Based on
the cross-lingual frequency of each of these patterns and the direction of morphological
derivation, it is possible to sort these verbs onto a scale (Haspelmath 1993; Samardzic
and Merlo 2012; Haspelmath et al. 2014), which can be possibly interpreted semantically
as the “spontaneity” of the corresponding event (see § 2.2). We investigate the existence
of any asymmetry between the lexical sets of the transitive object and the intransitive
subject, and if so the connection of this asymmetry with the spontaneity scale.

The structure of the paper is as follows. In § 2, we define the core notions of this
study, including lexical sets, causative-inchoative verbs, and distributional semantics. §
3 presents the method and the data, whereas § 4 reports the results of the experiments.
Finally, § 5 draws the conclusions and § 6 proposes possible future lines of research.

2. Definitions and Previous Work

In this section, we describe in detail the notions underlying the subject matter of the
research (lexical sets, § 2.1), the case study (causative-inchoative verbs, § 2.2), and the
method (distributional semantics, § 2.3). At the same time, we present the previous work
concerning each of these aspects.

2.1 Lexical Sets

A lexical set can be defined as the set of words that occupy a specific argument position
within a single verb sense, such as {gun, bullet, shot, projectile, rifle...} for the sense ‘to
shoot’ of to fire, or {employer, teacher, attorney, manager...} for its sense ‘to dismiss’. The
notion of lexical set was firstly introduced by Hanks (1996). Its purpose is explaining
how the semantics of verbs is affected by the patterns of complements they are found
with. Hanks’ approach is justified by the pervasiveness of patterns in corpora: these
patterns are instantiated by specific lexical items typically occurring in the argument po-
sitions. These items, called fillers, form sets belonging to different patterns of meaning.
Hanks and Pustejovsky (2005) and Hanks and Jezek (2008) propose an ontology where
fillers are clustered into semantic types, i.e. categories such as [[Location]], [[Event]],
[[Vehicle]], [[Emotion]]. These form a hierarchy that branches into more specific types.
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However, these categories are problematic, as lexical sets tend to “shimmer” (Jezek
and Hanks 2010): their membership tends to change according to the verb they associate
with. The shimmering nature of lexical sets is not an accidental phenomenon. Rather,
it stems from the fact that verb selectional restrictions may cut across conceptual cat-
egories due to the specific predication introduced by the verb. For example, both wash
and amputate typically select [[Body Part]] as their direct object. Nevertheless, they select
different prototypical members of the set, as can be seen in the examples below from
Jezek and Hanks (2010) where only shared members are underlined:

(1) [[Human]] wash [[Body Part]]
where [[Body Part]]: {hand, hair, face, foot, mouth...}

(2) [[Human]] amputate [[Body Part]]
where [[Body Part]]: {leg, limb, arm, hand, finger...}

Lexical sets can be extracted from corpora automatically. This operation hinges upon
traditional techniques for the acquisition of subcategorisation frames and selectional
restrictions. The former allow to capture the syntactic pattern (Brent 1991; Schulte
Im Walde 2000) or semantic frame pattern (Baker, Fillmore, and Lowe 1998) in which
each verb is found. The latter create probabilistic models of preferences over fillers that
are evaluated intrinsically through human judgments (Brockmann and Lapata 2003)
and extrinsically through disambiguation tasks (Van de Cruys 2014).

2.2 Causative-Inchoative Verbs

In principle, lexical sets can be constructed for every verb. In this work, however,
we limit our inquiry to a specific subset of verbs, namely causative-inchoative verbs
in Italian. This provides a testbed for our methods of analysis, which can be easily
extended to other classes of verbs and alternations. The choice of this specific subset is
due to the fact that understanding the internal structure of lexical sets and their relations
seems to be crucial to solve the problems surrounding this class of verbs, including
asymmetries between transitive objects and intransitive subjects and their relation with
the spontaneity scale (see below).

Causative-inchoative verbs alternate. In other terms, they appear in two patterns,
either as transitive or intransitive. In the former, an agent brings about a change of state
affecting a patient; in the latter, the change of the same patient is presented as sponta-
neous (e.g. break, as in “Mary broke the key” vs. “the key broke”). The verbs in the two
patterns can be expressed by either a same form or two distinct forms cross-lingually. In
the second case, the forms can be morphologically asymmetrical: one has a derivative
affix and the other does not. Otherwise, the forms are suppletive, being completely
unrelated (e.g. kill/die). The members of causative-inchoative verbs that retain a same
form or are morphologically related in both patterns vary cross-lingually (Montemagni,
Ruimy, and Pirrelli 1995). Alternations regarding physical change-of-state and manner-
of-motion are found in English, whereas they are limited to psychological and physical
changes-of-state in Italian. In Japanese and Salish languages, also verbs like arrive and
appear do alternate (Alexiadou 2010).

From a semantic point of view, Italian causative-inchoative verbs are required to
be telic and have an inanimate patient (Cennamo 1995). Morpho-syntactically, they are
generated from an asymmetrical derivation, called “anti-causativisation.” The intransi-
tive form is sometimes marked with the pronominal clitic si: its presence is mandatory,

27



Italian Journal of Computational Linguistics Volume 3, Number 1

optional or forbidden according to verb-specific rules (Cennamo and Jezek 2011). Be-
cause of this, many different categorisations of Italian causative-inchoative verbs were
attempted (Folli 2002; Jezek 2003).

Causative-inchoative verbs in general are endowed with peculiar properties.
Haspelmath (1993) claims that verbs with a cross-lingual preference for a marked
causative form denote a more “spontaneous” situation. Spontaneity is intended by the
author as the likelihood that the occurrence of the event denoted by the verb does not
require the intervention of an agent. In this way, a correlation between the form and
the meaning of these verbs was borne out. Moreover, Samardzic and Merlo (2012) and
Haspelmath et al. (2014) demonstrated that verbs appearing more frequently (intra- and
cross-lingually) in the inchoative form tend to morphologically derive the causative
form. Here, the correlation bridges between form and frequency. Vice versa, situations
entailing an agentive participation prefer to mark the inchoative form and occur more
frequently in the causative form.

However, what remains uncertain is whether spontaneous and agentive variants
of the same verbs differ in their lexical sets. Atkins and Levin (1995) and Levin and
Hovav (1995) argued that selectional restrictions for spontaneous verbs (named in-
ternal causation verbs) are stricter because their event unfolds due to some inherent
property of the patient: referents without this capability are excluded, contrary to
what happens with agentive verbs (named external causation verbs). This capability is
defined “teleological” by (Copley and Wolff 2014). However, McKoon and Macfarland
(2000) reported contradicting results from corpus-based analyses that did not find any
significant difference in the content of lexical sets of spontaneous and agentive verbs
(although from a sample of less than 100 sentences and only 5 categories). Instead,
they reported a difference between transitive objects and intransitive objects in that the
former contained a larger amount of abstract nouns compared to the latter.

2.3 Distributional Semantics

Once established the domain, we need to provide a reliable method of inquiry. Previous
works based on set theory treated lexical sets as Aristotelian categories, of which a filler
is either a member or not. For instance, Montemagni, Ruimy, and Pirrelli (1995) collected
lexical sets manually and employed set intersection as a measure of similarity between
two sets. Research in psychology, however, has long since demonstrated that the mem-
bers of a linguistic set are found in a radial continuum where the most central element is
the prototype for its category, and those at the periphery are less representative (Rosch
1973; Lakoff 1987).1

The full exploitation of the semantic information inherent to the argument fillers
of verbs can take advantage of some recent developments in distributional semantics.
Efficient algorithms have been devised to map each word of a vocabulary into a corre-
sponding vector of n real numbers, which can be thought as a sequence of coordinates
in a n-dimensional space (Mikolov et al. 2013a, inter alia). This mapping is yielded by
unsupervised machine learning, based on the assumption that the meaning of a word
can be inferred by its context, i.e. its neighbouring words in texts. This is known as Dis-
tributional Hypothesis (Harris 1954; Firth 1957). Distributed models have some relevant
properties: first, the geometric closeness of two vectors corresponds to the similarity

1 For previous work on lexical sets considering prototypicality in the context of the notion of shimmering,
see Jezek and Hanks (2010).
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in meaning of the corresponding words. Moreover, its dimensions possibly retain a
semantic interpretation such that non-trivial analogies can be established among words.

Word vectors allow to capture the spatial continuum implied by the notion of pro-
totype. Previous works showed that word vectors can be clustered to imitate linguistic
categories, because each cluster captures the ‘semantic landscape’ of a word (Hilpert
and Perek 2015). The center of these clusters can be interpreted as the prototype of the
corresponding category, and the proximity of the cluster members to the center as the
degree of their prototypicality. In fact, the cluster members are not scattered randomly,
but rather are arranged according to the internal structure of the cluster (Dubossarsky,
Weinshall, and Grossman 2016). The prototypicality of the cluster members provides an
explanation about linguistic phenomena, such as the resistance to the diachronic change
of meaning (Geeraerts 1997; Dubossarsky et al. 2015).

In this work, we extend the usage of the notion of prototypicality from meaning-
based categories derived through vector quantization to grammatically defined cate-
gories (i.e. lexical sets) derived through dependency parsing. Moreover, we go beyond
the estimation of the distance of each word from the centroid of its category: in particu-
lar, we propose new methods to assess the internal diversity in terms of sub-categories
and the distance between lexical sets themselves.

Table 1
List of 20 causative-inchoative verbs and count of their fillers for each argument slot.

Lemma Translation S O
chiuder(si) to close 289 606
aprir(si) to open 195 1337
aumentare to improve 534 998
romper(si) to break 83 419
riempir(si) to fill 58 166
raccoglier(si) to gather 85 505
connetter(si) to connect 39 134
divider(si) to split 129 246
finire to stop 1092 721
uscire/portare fuori to go/put out 325 638
alzar(si) to arise/raise 75 304
scuoter(si) to rock 10 69
bruciare to burn 75 174
congelare to freeze 10 30
girare to spin 155 243
seccare to dry 15 14
svegliar(si) to awake/wake 68 89
scioglier(si) to melt 94 143
(far) bollire to boil 2 2
affondare to sink 18 74
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3. Data and Method

We sourced the lexical sets from a sample of ItWac, a wide corpus gathered by crawling
texts from the Italian domain in the web using medium frequency vocabulary as seeds
(Baroni et al. 2009). This sample was further enriched with morpho-syntactic informa-
tion through the graph-based MATE-tools parser (Bohnet 2010). We trained and evalu-
ated this parser on the Italian treebank inside the collection of Universal Dependencies
v1.3 (Nivre et al. 2016). The evaluation on gold standard data suggests how many errors
we expect to affect the predictions on the new data, i.e. the ItWac corpus: these errors are
then propagated to the following steps for the extraction of lexical sets. According to the
LAS metric, the relevant dependency relations scored 0.751 for dobj (direct object), 0.719
for nsubj (subject), and 0.691 for nsubjpass (subject of a passive verb). A target group of
20 causative-inchoative verbs was taken from Haspelmath et al. (2014): they are listed
in Table 1, together with the count of the extracted lexical sets for the relevant semantic
macro-roles (see below).

Once the sentences were parsed, the target verbs were identified inside the depen-
dency trees. The lemmas of these verbs and the forms of their arguments were stored
in a database. Argument fillers were grouped according to the semantic macro-roles
defined by Dixon (1994), rather than their dependency relations: subjects of transitive
verbs (A), subjects of intransitive verbs (S) and objects (O). In particular, the subjects
of verb forms accompanied by the si-clitic and those without an object depending on
the same verb were treated as S.2 These operations resulted in a database structured as
follows: in each row, a verb is alongside of the fillers it occurs with in a specific sentence.
For example, compare an original sentence and its corresponding entry in Example 3:

(3) Plinio
Pliny

il
the

Vecchio
Elder

non
doesn’t

cita
mention

più
anymore

il
the

Po
Po

di
of

Adria
Adria

perché
because

l’
the

argine
bank

dell’
of the

Adige
Adige

si era
had

rotto
broken

ed
and

era
had

confluito
merged

nella
with the

Filistina.
Filistina.

Verb A S O
citare Plinio _ Po
rompere argine
confluire _ _ _

Because of the nature of vector models, we made the following design choices
to deal with special linguistic phenomena. We discarded everything but the head of
multi-word nouns, such as Plinio of Plinio il Vecchio, to preserve the one-to-one mapping
between words and vectors. We did not distinguish proper and common nouns, such
as Po and argine, since their representations lie in the same multi-dimensional space.
Subjects in ellipsis or co-reference were neglected, since no pragmatic annotation of
the sentences was available: for instance, Adige should appear as S in the entry for
confluire, which is left blank instead. Finally, polysemous words and homonyms were

2 Subjects of verbs inflected in the passive voice were treated as O, instead.
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represented by a single form, hence a single vector, since their representations conflate
all the relevant meanings. For instance, Adige is both a river and a location, but these are
not distinguished in the vector model.

The database was later collapsed by verb lemma so that each of them became
associated to three sets of fillers (one per macro-role). Each of these sets is a corpus-
based lexical set. Compared to manually picked lexical sets, they are more noisy but
less sparse: the vastness of the data mitigates the errors in the parsing step. Moreover,
the automation in lexical set extraction allows to access the fillers of virtually every verb:
resources based on manual selection like T-PAS (Jezek et al. 2014), on the other hand,
are limited to a small amount of verbs.

Afterwards, each of the argument fillers was mapped to a vector according to
three different pre-trained models. The vectors are generated unsupervisedly back-
propagating the gradient from the loss of a task to update randomly initialized em-
beddings. Each model, however, relies on different tasks:! CBOW stands for Continuous Bag of Words and is part of the Word2Vec

suite (Mikolov et al. 2013b). The Italian model was developed by Dinu,
Lazaridou, and Baroni (2015) through negative sampling. 300-dimensional
representations were obtained by training a binary classifier that discrimi-
nates whether a pair of a target word w and a context c belongs to an actual
text or not. True contexts are obtained from a window of 5 words on either
side of the target word, false contexts are drawn randomly from a noise
distribution. Moreover, infrequent words are pruned. On the other hand, a
preprocessing step called subsampling deletes words from windows whose
frequency f is higher than an threshold with a probability p = 1−

√
t
f . The

text from which word-context pairs are sampled is the full ItWac corpus,
consisting in 1.6 billion tokens. The representations resulting from this
algorithm are organised by topical similarity or relatedness.! fastText embeddings were trained on the dump of the Italian Wikipedia
through a character-level skip-gram (Bojanowski et al. 2017). The skip-gram
algorithm predicts the following element given a sequence of previous
elements. The elements of Bojanowski’s version are characters: each word is
represented by a bag of character n-grams and its representation consists in
the sum of the representations of each of them. The vector dimensionality
is 300; random sequences are drawn with a ratio of 5 to 1 compared to
true sequences, with a probability proportional to the square root of the
uni-gram frequency. The size of the context window is uniformly sampled
from values between 1 and 5. The rejection threshold for subsampling is
10−4. The usage of character n-grams makes this vector model sensitive to
morphological similarity.! Polyglot vectors result from a classifier distinguishing between sequences
taken from the dump of the Italian Wikipedia and corrupted sequences
(Al-Rfou, Perozzi, and Skiena 2013). The window of phrases was 5, the
dimensionality of vectors 64. Subsampling discarded words not appearing
in the raking of the 100 thousand most frequent ones.

In order to measure spatial distances inside these vector models, many different
metrics are available, including pure geometrical (Euclidean) distance. In this work, we
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rely on the popular metrics of cosine distance (Cha 2007). Assume that a and b are
vectors, and that ai and bi are their ith components, respectively. The cosine similarity
between a and b is then defined as follows:

cos(θ) =

∑n
i=1 aibi

√∑n
i=1 a2i

√∑n
i=1 b2

i

(1)

The opposite, namely cosine distance d, is simply defined as 1− cos(θ). As for the
values that d(a,b) can assume, the minimum is at 0 (angles completely overlap) and the
maximum is at 1 (orthogonal vectors).

4. Experiments

In order to answer the questions outlined in the introduction, we devised three exper-
iments. In all of them, we assume that the S and O lexical sets might not overlap, as
borne out by Montemagni, Ruimy, and Pirrelli (1995) and McCarthy (2000). The first (§
4.1) investigates the internal structure of lexical sets and how their members aggregate
around a prototype. Based on psycholinguistic theories (see § 2.3), we expect vectors to
lie on a continuum. As for causative-inchoative verbs in particular, objects were shown
to be more homogeneous than subjects (McKoon and Macfarland 2000), hence they
should form denser clusters. The second experiment (§ 4.2) deals with polymorphism of
lexical sets, i.e. the amount of distinct sub-categories they contain. We expect the number
of sub-clusters to be proportional to the number of verb senses. Finally, the third exper-
iment (§ 4.3) is aimed at studying how lexical sets of different arguments of the same
verb are related. In particular, we predict that the distance between intransitive subject
and transitive object varies depending on the spontaneity of the causative-inchoative
verb (see § 2.2). In fact, intransitive subjects and transitive objects of spontaneous verbs
should be limited to referents with “teleological capability” (Atkins and Levin 1995;
Levin and Hovav 1995), hence creating dense groups possibly located far from each
other. Fillers of agentive verbs instead should show a higher degree of overlap because
of their looser constraints.

4.1 Prototypicality: Distance from Centroid

Once the fillers have been mapped to their corresponding vectors, a lexical set appears
as a group of points in a multi-dimensional model. The centre of this group is the
Euclidean mean among the vectors, which is a vector itself and is called centroid. In
the first experiment, we measure the cosine distance of every vector member of a lexical
set from the centroid estimated from all the other members.3 This leave-one-out setting
aims at avoiding biases due to outliers (such as phraseological usages or misspellings).
In semantic terms, this measure should correspond to assessing how far a filler is from
its prototype.

We obtained two sets (S and O) of cosine distance values for each verb: these can be
plotted as boxes and whiskers, like in Figure 1. The cosine distances are represented as
a scatter plot: on its side, a box informs about the average (horizontal line), the median4

3 Every filler was weighted proportionally to its absolute frequency.
4 The median is the value separating the higher half of the ordered values from the lower half.
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Figure 1
Boxes and whiskers of vector distances from centroid. Lexical sets for objects are in red, for
subjects in blue. The columns in each subplot represent different models: from left to right,
CBOW, fastText, and Polyglot.
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(diamond), the second and third quartiles (rectangle), and the extremes (bars) of the
distribution.

Firstly, we observe a same trend for both intransitive subjects and objects that
depends on the algorithms. The whole bars tend to hover around higher values for
CBOW, and lower values for Polyglot. fastText instead lies somewhere in between them,
and its central quartiles cover a short span of values. Secondly, there is a systematic
gap between the medians for S and O. Excluding bollire, for which data are insufficient,
the object is lower 18 out of 19 times for CBOW. On the other hand, for Polyglot the
preference is very mild (11 out of 18) and no clear pattern emerges for fastText.

4.2 Polymorphism: Sub-Clusters

The distance from the prototype examined in § 4.1 does not account for the complex in-
ternal structure of a lexical set, which aggregates several sub-categories. Figure 2 shows
a visual example of this sub-organisation by plotting the heatmaps of the density of
vectors reduced to 2 dimensions through t-SNE (Maaten and Hinton 2008): it is possible
to observe spots in isolation and aggregation. In order to assess the polymorphism of
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Figure 2
Heatmaps of the density (low is white and high is blue) of vectors reduced to 2 dimensions
through t-SNE. They belong to the S lexical sets of aumentare (4 senses) and finire (12 senses).
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lexical sets, i.e. the amount of different shades of meaning they contain, we cluster the
vectors in each of them and contrast this measure with the number of the verb senses.

Vector clustering is performed through the algorithm X-Means (Pelleg and Moore
2000), an extension of the simpler algorithm K-Means (MacQueen 1967). The latter
performs vector quantisation: it assigns vectors in a space to a pre-specified amount
of k clusters. The algorithm converges into a local optimum by initialising k arbitrary
means inside the model. Then it carries on iteratively two steps: firstly it assigns each
vector to these means minimising a measure of variance. Secondly, it calculates the new
means based on the newly obtained clusters. Thus, for vectors v clusters C and centroids
µ, its objective can be formalised as:

argmin
C

k∑

i=1

∑

v∈Ci

∥v − µi∥ (2)

In addition to these steps, X-Means can perform a further operation, namely decid-
ing if and where splitting clusters in two to create new clusters. Iterations start from
k = 2 up to a pre-specified upper bound (in our case, k = 20): after a split, X-Means es-
timates through a test whether the old cluster or the two new clusters fit the data better:
in our case, this test consists in the Bayesian Information Criterion, which is defined as
follows: given a split M, the maximised value of the log-likelihood L̂ of the vectors V,
the number of parameters k, and the number of data points n, BIC(M) = L̂(V )− k

2 lnn.
The number of clusters provided by X-Means upon convergence is displayed in

Table 2. Moreover, we provide the number of senses of each verb according to WordNet
for Italian (Artale, Magnini, and Strapparava 1997) in a separate column. At first glance,
the results show that lexical sets tend to have a similar number of clusters across the al-
gorithms, which is surprising considering the different natures of these representations.
However, this might be due to a bias: in fact, X-Means is possibly inclined to make
similar decisions for sets of identical cardinality and with a low upper bound.

We estimated the Pearson’s correlation between the number of clusters and verb
senses, which is reported in the bottom column: values of its coefficient mirror the
strength of the correlations, ranging from -1 (negative), across 0 (absent), to 1 (positive).
The p-value instead stands for the confidence by which we can exclude the null hy-
pothesis (absence of correlation). Results for CBOW and fastText reveal a mild positive
correlation. This is especially evident for subjects, which appear to be a better cue for
predicting the number of verb senses. On the other hand, results are inconclusive for
Polyglot, as the p-value is not significant enough.

4.3 Spontaneity: Distance between Centroids

In §§ 4.1–4.2, lexical sets of the same verb have been considered independently from
each other. We now assess whether any relation holds between them by gauging the
cosine distance between the centroid of S and the centroid of O for each verb. This
operation is aimed at finding to which extent these two lexical sets overlap and unveil-
ing possible asymmetries. In order to estimate whether spontaneity (see § 2.2) affects
this degree of overlap, we compared the ranking of our sample of verbs according
to the ratio of the cross-lingual frequency of their transitive and intransitive forms
(Haspelmath et al. 2014) and a ranking based on their centroid distances.
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Table 2
Number of verb senses and clusters inside lexical sets upon convergence of X-Means.

Lemma Senses CBOW fastText Polyglot

S O S O S O

chiudere 9 10 13 15 13 10 13
aprire 5 10 16 12 16 12 12
aumentare 4 16 14 15 14 16 16
rompere 6 9 14 10 14 10 13
riempire 3 2 10 10 15 8 14
raccogliere 6 2 15 8 14 2 14
connettere 3 2 8 9 10 3 7
dividere 2 12 11 13 13 12 11
finire 12 16 15 16 16 16 14
uscire 12 19 15 14 14 15 13
alzare 6 6 12 10 16 11 13
scuotere 1 1 10 1 10 1 8
bruciare 11 8 13 13 14 2 11
congelare 4 2 2 4 2 2 2
girare 6 11 11 12 13 13 13
seccare 4 2 5 8 7 2 3
svegliare 1 7 8 9 7 10 8
sciogliere 7 14 10 16 12 14 11
bollire 2 - - - - - -
affondare 6 5 6 7 12 6 7

Pearson’s correlation 0.572 0.493 0.596 0.458 0.326 0.389
p-value 0.011 0.032 0.007 0.049 0.173 0.100

In Figure 3, we plot the ranking based on cross-lingual frequency against the cosine
distance: it emerges that the latter tends to increase for more spontaneous verbs, i.e.
verbs with a preference for the intransitive pattern. This tendency is straightforward for
all the vector models, as the LOESS line suggests. Moreover, after ranking verbs based
on cosine distance between S and O lexical sets, we estimated two correlation metrics
with respect to the frequency-based ranking: Spearman and Kendall. Their coefficients
with the corresponding p-values are reported in Table 3: they demonstrate a mild-
strong positive correlation for both CBOW and Polyglot. However, the p-value does not
allow to exclude the null hypothesis (absence of correlation) for fastText with reasonable
certainty.

5. Discussion

The questions at the heart of these experiments were: how are lexical set structured? In
particular, do their elements distribute uniformly in the space, or rather gather together
(near or far from the prototype)? Are they polymorphic, i.e. composed by more than one
sub-category? Moreover, which is the degree of overlap between lexical sets of different
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Figure 3
On the x-axis, ranking based on cross-lingual form frequencies as reported by Haspelmath et al.
(2014). On the y-axis, cosine distances between centroid of S and O lexical sets in Italian. Lines
are LOESS regressions, and shaded areas their confidence regions.

argument slots? In this section, we discuss the answers inferred from the results, and
analyse the specific behaviour of every vector model.

In the first experiment (§ 4.1), the members of O lexical sets are scattered from
the centre to the periphery. On the other hand, the members of S lexical sets lie in a
more compact range of distances, mostly farther from the centroid. This implies that
O behaves more similarly to a radial category, whereas S just populates the periphery.
From a linguistic point of view, this means that the content of O is more homogeneous,
whereas S is more heterogeneous: this finding is in line with previous work (McKoon
and Macfarland 2000). In the second experiment (§ 4.2), we observed a mild positive
correlation between the number of clusters and of the verb senses. Hence, it is possible
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Table 3
Spearman and Kendall correlations between a ranking based on lexical set distance in Italian
and another based on cross-lingual frequency ratio.

CBOW fastText Polyglot

Spearman 0.560 0.420 0.490
p-value 0.010 0.069 0.028

Kendall 0.411 0.305 0.358
p-value 0.012 0.064 0.030

to conclude that polymorphic verbs accept more categories of referents as their possible
argument fillers. This holds true especially for S.

In the third experiment (§ 4.3), we established the existence of a correlation between
the verb ranking based on the cross-lingual ratio of intransitive and transitive verbs and
the ranking based on cosine distance between S and O centroids in Italian. From a lin-
guistic point of view, this is possibly due to the constraints on referents of spontaneous
verbs (Atkins and Levin 1995; Levin and Hovav 1995), called teleological capability
(Copley and Wolff 2014): this makes the sets clear-cut and possibly far from each other.
This adds another piece to the puzzle of the so-called spontaneity scale: Figure 4 shows
a synopsis of our result in the context of the correlations established in previous works.
Solid lines stand for correlations proven based on corpus evidence. The dotted line, on
the other hand, suggests the existence of and underlying motivation for the correlations
(i.e. spontaneity), which nonetheless remains unproven and undetermined in its nature.
Its possible validation is left to future research, but remains tricky due to its purely
semantic nature.

The conclusions can be drawn from more than one vector model, although results
are not significant for all of them. In particular, fastText does not show any tendency
with respect to the distribution of distances, nor it is possible to exclude the null
hypothesis for the correlation between distance of S and O centres and frequency of the
intransitive pattern. This might be due to the fact that fastText is based on characters,
hence on morphological information, rather than capturing topic relatedness. Moreover,
there are possible biases that plague the experiments. Firstly, the homogeneity of the O
lexical set might be an artifact because the sample of objects is usually wider and hence
more representative. Instead, the heterogeneity of the S lexical set is in part due to its
method of extraction: sometimes also transitive subjects (A) are treated as S, because of
either unexpressed objects or parsing mistakes.

6. Conclusions and Future Work

Our work provided evidence that lexical sets of Italian causative-inchoative verbs are
non-uniform categories, whose distribution around the prototype varies to a great
extent. This distribution is sensitive to the argument slot: transitive objects display
a more uniform distribution of distances from the prototype, whereas the fillers of
intransitive subjects lie on the edge of the category. This difference might be due to dif-
ferent selectional restrictions applied to the object. Moreover, the number of verb senses
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?

Figure 4
Synopsis of the correlations among features of causative-inchoative verbs. The measures are
based on Kendall Tau test (τ ) and Spearman’s ranking test (ρ).

appeared to play a role with respect to the polymorphism of lexical sets: intuitively, the
more the shades of meaning, the more the argument types that match the selectional
preferences. Finally, a correlation was discovered between the cosine distance of lexical
sets of a given verb in Italian and the cross-lingual behaviour of its translations, i.e. the
tendency to appear more frequently as intransitive or as transitive. This finding has to
be paired with the previously established correlation between the latter and the cross-
lingual tendency to derive morphologically the intransitive form or the transitive one.

To amend the limitations mentioned in § 5 (noise from parsing and extraction,
lexical sets not fully representative), further research should: resort to an enhanced
database with a wider sample, try to reduce the parsing error with state-of-art parsers,
and add sense disambiguation for polysemous word forms (Grave, Obozinski, and Bach
2013). Also, it should choose even more pre-trained vector models, in order to try and
replicate these results. In particular, the new vector models could be optimized for sim-
ilarity through semantic lexica (Faruqui et al. 2015) or based on syntactic dependencies
(Séaghdha 2010). The experiments in this work may be extended to other languages,
either individually or through a multi-lingual word embedding model (Faruqui and
Dyer 2014). In fact, cross-lingually correlations are more clear-cut than those emerging
single languages (Haspelmath et al. 2014).
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